• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exerc.resolv.combinatoria

exerc.resolv.combinatoria

Mensagempor adauto martins » Dom Jul 28, 2019 19:23

(efe-escola tecnica do exercito-1946)
em um saco ha 4 bolas brancas e 6 pretas.
a)de quantas maneiras poderemos extrair 5 bolas,
sendo 2 brancas e 3 pretas?
b)de quantos modos poderemos 5 bolas,sendo todas pretas?
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 998
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.resolv.combinatoria

Mensagempor adauto martins » Dom Jul 28, 2019 19:56

soluçao:
a)a palavra maneira,modos da-se a ideia de arranjar,"arranjos".
mas a questao nao diz nada de "ordem","posiçao" e similares.
traz a ideia de grupos,conjuntos,entao vamos calcular as combinaçoes "possiveis".
possivel,possibilidades essa é a palavra crucial,e digamos central da analise combinatoria.
bom entao temos uma 5-upla a ser preenchidas por 2 bolas brancas e 3 pretas,logo:
de 4 bolas brancas precisaremos de 2,logo:
{{c}_{}}_{4,2}=4!/(2!.2!)=(4.3)/2!=6
de 6 bolas brancas precisaremos de 3,portanto:
{{c}_{}}_{6,3}=6!/(3!.3!)=(6.5.4.)/3!=(6.5.4)/6=20
agora usando a operaçao mais importante da analise combinatoria basica,
o qual é o principio multiplicativo da contagem,teremos:
{c}_{4,2}.{c}_{6,3}=6.20=120
b)das 6 bolas pretas precisaremos de 5,logo:
{c}_{6,5}=6!/(5!.1!)=6
ps-com o uso do princ.multiplicativo,podemos calcular todos os "arranjos" e combinaçoes.
faremos assim com a letra a) desse exercicio.
tomamos a 5-upla,das quais 2 sao bolas brancas e 3 pretas,a saber:
(-,-,-,-,-)\rightarrowtomamos as possibilidades,e as condiçoes pedidas pelo o exercicio...

(4,3,6,5,4)\rightarrow (4.3.6.5.4)/(2!.3!)=120
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 998
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.resolv.combinatoria

Mensagempor adauto martins » Seg Jul 29, 2019 11:32

ps-
esqueci de dizer q.a divisao pelo produto 2!.3!,é devido a repetiçao 2!.3! do produto
do numerador,que sao as possibilidades da 5-upla.caso estivessemos calculando
os "arranjos",ficariam somente o produto das possibildades(4,3,6,5,4).mas como estamos
calculando as combinaçoes,entao dividimos pelo produto do denominador(2!.3!)repetiçoes
da 5-upla...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 998
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Análise Combinatória

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D