• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Análise Combinatória - Sequencias distintas

Análise Combinatória - Sequencias distintas

Mensagempor Lana Brasil » Seg Mai 13, 2019 16:06

Boa Tarde.
Gostaria de ajuda para essa questão, por favor. Não consigo chegar no resultado.

Um baralho é composto por 52 cartas, sendo 13 de cada naipe. Os naipes são: copas, ouros, espadas e paus; e as cartas, para cada naipe são: A (as),2,3...,10, J(valete),Q (dama) e K(rei). As cartas de um baralho comum foram distribuídas em duas caixas da seguinte maneira: Na caixa X, foram colocadas todas as cartas de ouros e de paus e na caixa Y, todas as cartas de espada e de copas. Deseja-se retirar, ao acaso, sucessivamente e sem reposição , 3 cartas da caixa X e, em seguida 2 cartas da caixa Y.
a) Em quantas sequencias distintas aparecem os 4 ases e 1 rei? R.: 24
b) Em quantas sequencias distintas aparecem os 4 ases? R.: 288
Lana Brasil
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 71
Registrado em: Dom Abr 07, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Análise Combinatória - Sequencias distintas

Mensagempor adauto martins » Qui Jul 04, 2019 15:18

a)
uma sequencia,com 5 opçoes e 8 cartas p.essas opçoes.4 ases,4 reis...
como caix.(x)\cap caixa(y)=\phipodemos pegar qquer carta das 52 disponiveis,teremos a seguite configuraçao:
\left(4,3,2,1,{1}^{*} \right)
{1}^{*} pode ser qualquer q. nao seja As...pelo principio da multiplicaçao teremos:
4.3.2.1.1=24...
b)
\left(4!,3!,2!,1!,0!} \right)...4!.3!.2!.1!.0!=288
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 721
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.