• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Análise Combinatória - Sequencias distintas

Análise Combinatória - Sequencias distintas

Mensagempor Lana Brasil » Seg Mai 13, 2019 16:06

Boa Tarde.
Gostaria de ajuda para essa questão, por favor. Não consigo chegar no resultado.

Um baralho é composto por 52 cartas, sendo 13 de cada naipe. Os naipes são: copas, ouros, espadas e paus; e as cartas, para cada naipe são: A (as),2,3...,10, J(valete),Q (dama) e K(rei). As cartas de um baralho comum foram distribuídas em duas caixas da seguinte maneira: Na caixa X, foram colocadas todas as cartas de ouros e de paus e na caixa Y, todas as cartas de espada e de copas. Deseja-se retirar, ao acaso, sucessivamente e sem reposição , 3 cartas da caixa X e, em seguida 2 cartas da caixa Y.
a) Em quantas sequencias distintas aparecem os 4 ases e 1 rei? R.: 24
b) Em quantas sequencias distintas aparecem os 4 ases? R.: 288
Lana Brasil
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Dom Abr 07, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.