• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão probabilidade

Questão probabilidade

Mensagempor pribl17- » Sex Ago 18, 2017 17:57

Uma urna contém 8 bolas brancas e 6 bolas pretas. Ao serem retiradas, ao acaso, 4 bolas da urna, sem reposição, a probabilidade de que pelo menos três bolas sejam pretas é igual a:
a) 25/143
b) 23/77
c)18/57
d) 31/65
e)48/91
pribl17-
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Ago 18, 2017 17:03
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Questão probabilidade

Mensagempor DanielFerreira » Dom Ago 20, 2017 02:34

pribl17- escreveu:Uma urna contém 8 bolas brancas e 6 bolas pretas. Ao serem retiradas, ao acaso, 4 bolas da urna, sem reposição, a probabilidade de que pelo menos três bolas sejam pretas é igual a:
a) 25/143
b) 23/77
c)18/57
d) 31/65
e)48/91


Olá pribl17, seja bem-vindo!!

Inicialmente, devemos determinar a quantidade de combinações com as bolas da urna. Dessa forma, teremos o espaço amostral (em quantidade). E, fazemos isso aplicando o conceito de Combinação Simples. Segue,

Decisão: combinar 14 (8 + 6) bolas da urna de quatro em quatro.

\\ \mathsf{c_{14}^{4} =} \\\\ \mathsf{\frac{14!}{(14 - 4)!4!} =} \\\\\\ \mathsf{\frac{14 \cdot 13 \cdot \cancel{12} \cdot 11 \cdot \cancel{10!}}{\cancel{10!} \cancel{4} \cdot \cancel{3} \cdot 2 \cdot 1} =} \\\\\\ \mathsf{\frac{14 \cdot 13 \cdot 11}{2} =} \\\\ \boxed{\mathsf{1001}}

Por conseguinte,dividimos a resolução em dois casos: com três bolas retiradas e com quatro bolas retiradas.

CASO I:

d_1: combinar 6 bolas pretas tomadas três a três;
d_2: combinar 8 bolas que não são pretas tomadas uma a uma.

Então,

\\ \mathsf{C_{6}^{3} \cdot C_{8}^{1} =} \\\\ \mathsf{\frac{6 \cdot 5 \cdot 4 \cdot 3!}{3 \cdot 2 \cdot 1 3!} \cdot \frac{8 \cdot 7!}{1!7!} =} \\\\ \mathsf{20 \cdot 8 =} \\\\ \boxed{\mathsf{160}}


CASO II:

d_1: combinar 6 bolas pretas tomadas quatro a quatro;

Daí,

\\ \mathsf{C_{6}^{4} =} \\\\ \mathsf{\frac{6 \cdot 5 \cdot 4!}{2 \cdot 1 4!} =} \\\\ \boxed{\mathsf{15}}


Pelo princípio aditivo,

\\ \mathsf{160 + 15 =} \\\\ \boxed{\mathsf{175}}


Por fim, aplicamos a definição de probabilidade:

\\ \mathsf{\frac{175}{1001} =} \\\\\\ \mathsf{\frac{\cancel{7} \cdot 25}{\cancel{7} \cdot 143} =} \\\\\\ \boxed{\boxed{\mathsf{\frac{25}{143}}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1670
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59