• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão probabilidade

Questão probabilidade

Mensagempor pribl17- » Sex Ago 18, 2017 17:57

Uma urna contém 8 bolas brancas e 6 bolas pretas. Ao serem retiradas, ao acaso, 4 bolas da urna, sem reposição, a probabilidade de que pelo menos três bolas sejam pretas é igual a:
a) 25/143
b) 23/77
c)18/57
d) 31/65
e)48/91
pribl17-
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Ago 18, 2017 17:03
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Questão probabilidade

Mensagempor DanielFerreira » Dom Ago 20, 2017 02:34

pribl17- escreveu:Uma urna contém 8 bolas brancas e 6 bolas pretas. Ao serem retiradas, ao acaso, 4 bolas da urna, sem reposição, a probabilidade de que pelo menos três bolas sejam pretas é igual a:
a) 25/143
b) 23/77
c)18/57
d) 31/65
e)48/91


Olá pribl17, seja bem-vindo!!

Inicialmente, devemos determinar a quantidade de combinações com as bolas da urna. Dessa forma, teremos o espaço amostral (em quantidade). E, fazemos isso aplicando o conceito de Combinação Simples. Segue,

Decisão: combinar 14 (8 + 6) bolas da urna de quatro em quatro.

\\ \mathsf{c_{14}^{4} =} \\\\ \mathsf{\frac{14!}{(14 - 4)!4!} =} \\\\\\ \mathsf{\frac{14 \cdot 13 \cdot \cancel{12} \cdot 11 \cdot \cancel{10!}}{\cancel{10!} \cancel{4} \cdot \cancel{3} \cdot 2 \cdot 1} =} \\\\\\ \mathsf{\frac{14 \cdot 13 \cdot 11}{2} =} \\\\ \boxed{\mathsf{1001}}

Por conseguinte,dividimos a resolução em dois casos: com três bolas retiradas e com quatro bolas retiradas.

CASO I:

d_1: combinar 6 bolas pretas tomadas três a três;
d_2: combinar 8 bolas que não são pretas tomadas uma a uma.

Então,

\\ \mathsf{C_{6}^{3} \cdot C_{8}^{1} =} \\\\ \mathsf{\frac{6 \cdot 5 \cdot 4 \cdot 3!}{3 \cdot 2 \cdot 1 3!} \cdot \frac{8 \cdot 7!}{1!7!} =} \\\\ \mathsf{20 \cdot 8 =} \\\\ \boxed{\mathsf{160}}


CASO II:

d_1: combinar 6 bolas pretas tomadas quatro a quatro;

Daí,

\\ \mathsf{C_{6}^{4} =} \\\\ \mathsf{\frac{6 \cdot 5 \cdot 4!}{2 \cdot 1 4!} =} \\\\ \boxed{\mathsf{15}}


Pelo princípio aditivo,

\\ \mathsf{160 + 15 =} \\\\ \boxed{\mathsf{175}}


Por fim, aplicamos a definição de probabilidade:

\\ \mathsf{\frac{175}{1001} =} \\\\\\ \mathsf{\frac{\cancel{7} \cdot 25}{\cancel{7} \cdot 143} =} \\\\\\ \boxed{\boxed{\mathsf{\frac{25}{143}}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1680
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.