• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão probabilidade

Questão probabilidade

Mensagempor pribl17- » Sex Ago 18, 2017 17:57

Uma urna contém 8 bolas brancas e 6 bolas pretas. Ao serem retiradas, ao acaso, 4 bolas da urna, sem reposição, a probabilidade de que pelo menos três bolas sejam pretas é igual a:
a) 25/143
b) 23/77
c)18/57
d) 31/65
e)48/91
pribl17-
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Ago 18, 2017 17:03
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Questão probabilidade

Mensagempor DanielFerreira » Dom Ago 20, 2017 02:34

pribl17- escreveu:Uma urna contém 8 bolas brancas e 6 bolas pretas. Ao serem retiradas, ao acaso, 4 bolas da urna, sem reposição, a probabilidade de que pelo menos três bolas sejam pretas é igual a:
a) 25/143
b) 23/77
c)18/57
d) 31/65
e)48/91


Olá pribl17, seja bem-vindo!!

Inicialmente, devemos determinar a quantidade de combinações com as bolas da urna. Dessa forma, teremos o espaço amostral (em quantidade). E, fazemos isso aplicando o conceito de Combinação Simples. Segue,

Decisão: combinar 14 (8 + 6) bolas da urna de quatro em quatro.

\\ \mathsf{c_{14}^{4} =} \\\\ \mathsf{\frac{14!}{(14 - 4)!4!} =} \\\\\\ \mathsf{\frac{14 \cdot 13 \cdot \cancel{12} \cdot 11 \cdot \cancel{10!}}{\cancel{10!} \cancel{4} \cdot \cancel{3} \cdot 2 \cdot 1} =} \\\\\\ \mathsf{\frac{14 \cdot 13 \cdot 11}{2} =} \\\\ \boxed{\mathsf{1001}}

Por conseguinte,dividimos a resolução em dois casos: com três bolas retiradas e com quatro bolas retiradas.

CASO I:

d_1: combinar 6 bolas pretas tomadas três a três;
d_2: combinar 8 bolas que não são pretas tomadas uma a uma.

Então,

\\ \mathsf{C_{6}^{3} \cdot C_{8}^{1} =} \\\\ \mathsf{\frac{6 \cdot 5 \cdot 4 \cdot 3!}{3 \cdot 2 \cdot 1 3!} \cdot \frac{8 \cdot 7!}{1!7!} =} \\\\ \mathsf{20 \cdot 8 =} \\\\ \boxed{\mathsf{160}}


CASO II:

d_1: combinar 6 bolas pretas tomadas quatro a quatro;

Daí,

\\ \mathsf{C_{6}^{4} =} \\\\ \mathsf{\frac{6 \cdot 5 \cdot 4!}{2 \cdot 1 4!} =} \\\\ \boxed{\mathsf{15}}


Pelo princípio aditivo,

\\ \mathsf{160 + 15 =} \\\\ \boxed{\mathsf{175}}


Por fim, aplicamos a definição de probabilidade:

\\ \mathsf{\frac{175}{1001} =} \\\\\\ \mathsf{\frac{\cancel{7} \cdot 25}{\cancel{7} \cdot 143} =} \\\\\\ \boxed{\boxed{\mathsf{\frac{25}{143}}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1679
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?