• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Princípio Fundamental da Contagem] Elementos repetidos

[Princípio Fundamental da Contagem] Elementos repetidos

Mensagempor Russman » Ter Out 25, 2016 14:46

Problema:

"De um campeonato de futebol participaram 12 times, 2 gaúchos, 2 mineiros, 4 paulistas e 4 cariocas. De quantos modos pode ser formado o grupo dos quatro primeiros colocados se o primeiros lugar deve ser ocupado sempre por um time gaúcho?"

Amigos, alguém sugere uma solução segura para este problema? Estou com dificuldade de organizar as repetições na contagem.

Obrigado.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Princípio Fundamental da Contagem] Elementos repetidos

Mensagempor Russman » Qua Out 26, 2016 20:51

Alguém?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Princípio Fundamental da Contagem] Elementos repetidos

Mensagempor DanielFerreira » Sáb Ago 12, 2017 18:49

Russman escreveu:Problema:

"De um campeonato de futebol participaram 12 times, 2 gaúchos, 2 mineiros, 4 paulistas e 4 cariocas. De quantos modos pode ser formado o grupo dos quatro primeiros colocados se o primeiros lugar deve ser ocupado sempre por um time gaúcho?"


Sejam G1, G2, M1, M2, P1, P2, P3, P4, C1, C2, C3 e C4 os times de futebol.

Assim, temos as seguintes decisões a tomar:

d1: escolher um time para o primeiro lugar, n(d1) = 2;
d2: escolher um time para o segundo lugar, n(d2) = 11;
d3: escolher um time para o terceiro lugar, n(d3) = 10;
d4: escolher um time para o quarto lugar, n(d4) = 9.

Então, pelo PFC,

\\ \mathsf{2 \cdot 11 \cdot 10\cdot 9 =} \\\\ \boxed{\mathsf{1980}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1664
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59