• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Princípio Fundamental da Contagem] Números ímpares.

[Princípio Fundamental da Contagem] Números ímpares.

Mensagempor Russman » Ter Out 25, 2016 14:41

Problema:

"Quantos números ímpares de 4 algarismos diferentes e menores do que 6400 podem ser formados com os algarismos do sistema decimal de numeração?"



Amigos, alguém sugere uma solução segura para este problema? Estou enfrentando certa dificuldade de listar as possibilidades.

Obrigado!
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Princípio Fundamental da Contagem] Números ímpares.

Mensagempor DanielFerreira » Dom Nov 06, 2016 22:36

Olá Russman! Pensei no seguinte:

Inicialmente, devemos encontrar o menor e o maior... São eles: 1023 e 6397.

Avaliemos as possibilidades... MILHAR.

(i) fixando o 1º algarismo e o último temos:

\underline{\mathsf{1}} \cdot \underbrace{\underline{\mathsf{?}} \cdot \underline{\mathsf{?}}}_{\mathsf{8 \cdot 7 = 56}} \cdot \underline{\mathsf{3}}

Mas, note que o último dígito poderá ser o 5, o 7 e o 9. Desse modo, \mathsf{56 \cdot 4 = 224}.


(ii) fixando o 1º algarismo em 2, teremos:

\underline{\mathsf{2}} \cdot \underbrace{\underline{\mathsf{?}} \cdot \underline{\mathsf{?}}}_{\mathsf{8 \cdot 7 = 56}} \cdot \underline{\mathsf{1}}

Mas, teremos também 3, 5, 7 e 9. Portanto, \mathsf{56 \cdot 5 = 280}.


(iii) fixando o 3 na unidade de milhar, a quantidade de números será calculada de maneira análoga à (i). Com efeito, teremos 224 números.


(iv) fixando o 4 na unidade de milhar, a quantidade de números será calculada de modo análogo ao item (ii), ou seja, 280.


(v) fixando o 5 na unidade de milhar... 224.


(vi) fixando o 6, devemos ficar atento ao máximo... Sendo assim, devemos esmiuçar as possibilidades. Segue,

\\ \bullet \underline{\mathsf{6}} \cdot \underline{\mathsf{0}} \cdot \underbrace{\underline{\mathsf{?}}}_{\mathsf{7}} \cdot \underline{\mathsf{1}}. \quad \mathsf{Entretanto, \ na \ \acute{u}ltima \ posi\c{c}\~ao \ temos} \\\\ \mathsf{1, 3, 5, 7, 9. \ Ou \ seja, \ 5 \cdot 7 = 35.}

\\ \bullet \underline{\mathsf{6}} \cdot \underline{\mathsf{1}} \cdot \underbrace{\underline{\mathsf{?}}}_{\mathsf{7}} \cdot \underline{\mathsf{3}}. \quad \mathsf{Todavia, \ \acute{u}ltima \ posi\c{c}\~ao \ pode \ ser \ ocupada \ por} \\\\ \mathsf{3, 5, 7, 9. \ Isto \ \acute{e}, \ 4 \cdot 7 = 28.}

\\ \bullet \underline{\mathsf{6}} \cdot \underline{\mathsf{2}} \cdot \underline{\mathsf{?}} \cdot \underline{\mathsf{1}}. \quad \mathsf{Temos \ tamb\acute{e}m \ 35 \ n\acute{u}meros}

Por fim, avaliamos \underline{\mathsf{6}} \cdot \underline{\mathsf{3}} \cdot \underline{\mathsf{?}} \cdot \underline{\mathsf{1}}. Que, é o mesmo que \mathsf{4 \cdot 7 (1, 5, 7, 9) = 28}.


Logo, temos que:

\\ \mathsf{224 + 280 + 224 + 280 + 224 + 35 + 28 + 35 + 28 =} \\\\ \boxed{\mathsf{1358}}

Tens o gabarito?

Até!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1641
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?