• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Análise Combinatória] - Questões militares

[Análise Combinatória] - Questões militares

Mensagempor Ronaldo Fernandes » Dom Jul 31, 2016 20:49

1° Questão
Dados os conjuntos A={a,b,c,d} e B={5,6,7,8,9}, o número de arranjos simples 5 a 5 que podemos formar com os elementos desses dois conjuntos, de maneira que nesses arranjos tenha sempre 2 letras, é igual a:
a)240 b)1440 c)2880 d)7200


OBS: Tentei resolver com principio fundamental da contagem, mantendo 2 letras fixas e analisando as possibilidades nos espaços restantes e depois permutar estas duas letras, mas não consegui executar!

2° Questão
Uma pessoa pretende levar para casa 8 pacotes de um determinado produto de um supermercado. Se no supermercado tem 6 marcas diferentes desse produto e ela quer provar de todas essas marcas, de quantas maneiras diferentes ela poderá levar esses produtos?

OBS: Fiz um arranjo A8,6 mas não consegui chegar no resultado, o que fiz de errado?
Ronaldo Fernandes
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Jul 31, 2016 20:36
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Análise Combinatória] - Questões militares

Mensagempor paulo testoni » Seg Set 18, 2017 17:32

Hola.

2° Questão: Uma pessoa pretende levar para casa 8 pacotes de um determinado produto de um supermercado. Se no supermercado tem 6 marcas diferentes desse produto e ela quer provar de todas essas marcas, de quantas maneiras diferentes ela poderá levar esses produtos?

OBS: Fiz um arranjo A8,6 mas não consegui chegar no resultado, o que fiz de errado?

Vc pode usar: número de soluções inteiras não negativas da equação:

x + y + z  + q + k + r  = 8

C_{13}^{8}
paulo testoni
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 44
Registrado em: Ter Set 30, 2008 11:24
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: [Análise Combinatória] - Questões militares

Mensagempor paulo testoni » Seg Set 18, 2017 17:38

Hola.

1° Questão
Dados os conjuntos A={a,b,c,d} e B={5,6,7,8,9}, o número de arranjos simples 5 a 5 que podemos formar com os elementos desses dois conjuntos, de maneira que nesses arranjos tenha sempre 2 letras, é igual a:
a)240 b)1440 c)2880 d)7200


OBS: Tentei resolver com principio fundamental da contagem, mantendo 2 letras fixas e analisando as possibilidades nos espaços restantes e depois permutar estas duas letras, mas não consegui executar!

O enunciado é bem claro, pois ele pede o número de arranjos, então:

A_4^{2}*A_5^{3}
paulo testoni
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 44
Registrado em: Ter Set 30, 2008 11:24
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59