• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Analise Combinatoria

Analise Combinatoria

Mensagempor educsantos » Ter Jan 05, 2016 19:38

A resposta e: Escoher a 1 menina e 50/75 e escoher a 2 menina 49/74, multiplica os dois = 44%. Como chegar e desenvolver a questão.

Considere que sejam oferecidas, semestralmente, 75 vagas para o ingresso de discentes em determinado curso superior de uma universidade e que, no primeiro semestre de 2009, tenham ingressado nesse curso 75 discentes — 25 do sexo masculino e 50 do sexo feminino. Com base nessas informações, julgue os itens a seguir.

Se dois estudantes forem escolhidos aleatoriamente entre os 75, então, a probabilidade de os dois serem do sexo feminino será superior a 0,5.
educsantos
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Dez 26, 2011 12:11
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1998
Andamento: formado

Re: Analise Combinatoria

Mensagempor Russman » Qui Jan 07, 2016 16:49

Você tem 75 pessoas: 25 do sexo masculino e 50 do sexo feminino.

Vai escolher duas pessoas aleatoriamente.

Na primeira escolha, a chance de escolher uma do sexo feminino é 50 de 75. Ou seja, 50/75.

Agora, na segunda escolha, você já escolheu uma do sexo feminino. É probabilidade condicional: Dado que na primeira escolha você obteve sexo feminino, qual a probabilidade de escolher outra do sexo feminino. Então, sobram 74 pessoas dentre as quais 49 são do sexo feminino. Ou seja, probabilidade de escolher do sexo feminino é 49/74.

Como a probabilidade é "de ser do sexo feminino E do sexo feminino" você multiplica ambas probabilidades.

(50/75)*(49/74) = 441/999 = 0,441441441... = 44% aproximadamente.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Analise Combinatoria

Mensagempor educsantos » Qui Jan 07, 2016 17:27

muito obrgado pela ajuda. Existe uma maneira de simplificar essa conta. Essa conta e muito grande.
educsantos
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Dez 26, 2011 12:11
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1998
Andamento: formado

Re: Analise Combinatoria

Mensagempor Russman » Qui Jan 07, 2016 17:34

Não é grande. É só contar quantas pessoas tem e quantas mulheres sobraram em cada tirada.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.


cron