• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Princípio fundamental da contagem

Princípio fundamental da contagem

Mensagempor zenildo » Qui Mai 21, 2015 18:10

Paulo possui 709 livros e identificou cada um destes livros com um código formado por três letras do nosso alfabeto, seguindo a “ordem alfabética” assim definida: AAA, AAB,..., AAZ, ABA, ABB,..., ABZ, ACA,... Então, o primeiro livro foi identificado com AAA, o segundo com AAB,... Nestas condições, considerando o alfabeto com 26 letras, o código associado ao último livro foi:

A) BAG. Eu queria que alguém comentasse esse problema, pois eu não sei se a resposta que ache está certa, letra A.



B) BAU.


C) BBC.


D) BBG.


E) BAB.
zenildo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 309
Registrado em: Sáb Abr 06, 2013 20:12
Localização: SALVADOR-BA, TERRA DO AXÉ! BAÊA!!!!!
Formação Escolar: EJA
Área/Curso: PRETENDO/ DIREITO
Andamento: cursando

Re: Princípio fundamental da contagem

Mensagempor DanielFerreira » Sáb Mai 23, 2015 14:45

Fixemos as duas letras iniciais, ou seja, AA; a terceira poderá ser {A, B, C,..., Z}. Portanto, 26 possibilidades!

Fixemos as duas letras iniciais... AB; a terceira poderá ser ocupada por 26 letras.

Com isso, temos que ABZ ocupa 52ª posição.

Entendido o raciocínio, podemos galgar voos mais alto; como, por exemplo, fixar apenas a letra inicial, veja:

- fixando a primeira letra, que é A, então: para a segunda posição temos 26 possibilidades e para a terceira também. Portanto, começando pela letra A temos um total de 676 (26 . 26) códigos; logo, o código AZZ (que é o último iniciando por A) ocupa a 676ª posição.


Passemos para o código cujo o início é em BA, para a terceira posição temos 26 possibilidades; portanto, o código BAZ ocupa a posição 702 (676 + 26).

Ora, ficou fácil notar que precisamos de mais 7 códigos para alcançar os 709 livros. Daí,

703ª => BBA
704ª => BBB
705ª => BBC
706ª =>BBD
707ª => BBE
708ª => BBF
709ª => BBG
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1680
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Princípio fundamental da contagem

Mensagempor zenildo » Sáb Mai 23, 2015 18:46

Muito obrigado, com o tempo agente pega o jeito de fazer a análise combinatória.
zenildo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 309
Registrado em: Sáb Abr 06, 2013 20:12
Localização: SALVADOR-BA, TERRA DO AXÉ! BAÊA!!!!!
Formação Escolar: EJA
Área/Curso: PRETENDO/ DIREITO
Andamento: cursando


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}