• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Princípio fundamental da contagem

Princípio fundamental da contagem

Mensagempor zenildo » Qui Mai 21, 2015 18:10

Paulo possui 709 livros e identificou cada um destes livros com um código formado por três letras do nosso alfabeto, seguindo a “ordem alfabética” assim definida: AAA, AAB,..., AAZ, ABA, ABB,..., ABZ, ACA,... Então, o primeiro livro foi identificado com AAA, o segundo com AAB,... Nestas condições, considerando o alfabeto com 26 letras, o código associado ao último livro foi:

A) BAG. Eu queria que alguém comentasse esse problema, pois eu não sei se a resposta que ache está certa, letra A.



B) BAU.


C) BBC.


D) BBG.


E) BAB.
zenildo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 309
Registrado em: Sáb Abr 06, 2013 20:12
Localização: SALVADOR-BA, TERRA DO AXÉ! BAÊA!!!!!
Formação Escolar: EJA
Área/Curso: PRETENDO/ DIREITO
Andamento: cursando

Re: Princípio fundamental da contagem

Mensagempor DanielFerreira » Sáb Mai 23, 2015 14:45

Fixemos as duas letras iniciais, ou seja, AA; a terceira poderá ser {A, B, C,..., Z}. Portanto, 26 possibilidades!

Fixemos as duas letras iniciais... AB; a terceira poderá ser ocupada por 26 letras.

Com isso, temos que ABZ ocupa 52ª posição.

Entendido o raciocínio, podemos galgar voos mais alto; como, por exemplo, fixar apenas a letra inicial, veja:

- fixando a primeira letra, que é A, então: para a segunda posição temos 26 possibilidades e para a terceira também. Portanto, começando pela letra A temos um total de 676 (26 . 26) códigos; logo, o código AZZ (que é o último iniciando por A) ocupa a 676ª posição.


Passemos para o código cujo o início é em BA, para a terceira posição temos 26 possibilidades; portanto, o código BAZ ocupa a posição 702 (676 + 26).

Ora, ficou fácil notar que precisamos de mais 7 códigos para alcançar os 709 livros. Daí,

703ª => BBA
704ª => BBB
705ª => BBC
706ª =>BBD
707ª => BBE
708ª => BBF
709ª => BBG
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1681
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Princípio fundamental da contagem

Mensagempor zenildo » Sáb Mai 23, 2015 18:46

Muito obrigado, com o tempo agente pega o jeito de fazer a análise combinatória.
zenildo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 309
Registrado em: Sáb Abr 06, 2013 20:12
Localização: SALVADOR-BA, TERRA DO AXÉ! BAÊA!!!!!
Formação Escolar: EJA
Área/Curso: PRETENDO/ DIREITO
Andamento: cursando


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: