• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Análise Combinatória] Combinações Completas

[Análise Combinatória] Combinações Completas

Mensagempor Pessoa Estranha » Seg Mai 04, 2015 00:00

Olá, preciso de ajuda para resolver a seguinte questão:

Quantas são as soluções inteiras positivas de x + y + z < 10?

Minha solução:

Como queremos soluções inteiras positivas, então as variáveis devem receber valores inteiros estritamente maiores do que zero. Logo, devem ser maiores ou iguais a 1. Assim, por exemplo, x ? 1 => x – 1 ? 0. Portanto, a inequação dada pode ser substituída por: a + b + c < 7, onde a = x – 1, b = y – 1, c = z – 1 são variáveis não-negativas. Como ainda é uma desigualdade, basta colocarmos uma variável de folga f. Assim, a + b + c + f = 7. Agora, podemos seguir a mesma ideia do esquema de "traço-bola". Vamos permutar 3 “traços” e 7 “bolas”. Logo, temos (10!)/((3!)(7!)) = 120 soluções.

A resposta certa é 84.

Por que a minha solução está errada? Onde errei?

Muito Obrigada!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Análise Combinatória] Combinações Completas

Mensagempor alexandre_de_melo » Qua Jul 29, 2015 11:57

Se x+y+z<10 então x+y+z <= 9 ,e logo,
substituindo, x-1=a, y-1=b, z-1=c, teremos
a+b+c <=6 ,e logo,
usando f como folga, teremos
a+b+c+f=6 e logo
\left( ^9 _6 \right)=84

Linda resolução, né!??!?!
Grande abraço pra ti!!!! Fuiiiiiiiiii!!!!!
alexandre_de_melo
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Ter Fev 25, 2014 12:00
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. em Matemática
Andamento: formado

Re: [Análise Combinatória] Combinações Completas

Mensagempor adauto martins » Sex Set 20, 2019 16:47

o numero das soluçoes da inequaçao
x+y+z\prec 10
seja w,tal que:
x+y+z+w=10...{c}_{(10+4-1,4)}=13!/(4!.9!)=...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Análise Combinatória] Combinações Completas

Mensagempor adauto martins » Sex Set 20, 2019 17:14

correçao:
as combinaçoes completas(combinaçao com elementos distintos ou nao,com repetiçoes)
{x}_{1}+...+{x}_{n}=p\Rightarrow {c}_{(n+p-1,p)}=(n+p-1)!/(p!.(n-1)!),demonstrarei tal fato mais a frente...em nosso caso,errei o dados,logo:
x+y+z+w=10\Rightarrow {c}_{(4+10-1,10)}=13!/(10!.3!)=(13*12*11)/6=286
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Análise Combinatória] Combinações Completas

Mensagempor adauto martins » Sex Set 20, 2019 17:39

mais uma correçao:
o pedido do problema sao as soluçoes positivas.as que calculei sao as soluçoes inteiras e nao-negativas,caso que considera as soluçoes contendo "zeros" nas p-uplas.nesse caso as soluçoes sao dadas por:
{c}_{(n-1),(p-1)}=(n-1)!/((p-1)!.(n-p)!) \Rightarrow 

{c}_{(10-1,4}=(10-1)!/((4-1)!.(10-4)!)=9!/(3!.6!)=9*8*7/6=84
...obrigado
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)