• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Combinatória] - matemática discreta

[Combinatória] - matemática discreta

Mensagempor Skizito » Dom Jul 27, 2014 16:38

Boa tarde, precisava de ajuda nestes 3 exercicios.

1- De quantas maneiras distintas podemos distribuir 27 livros distintos por três pessoas A,
B e C sabendo que as pessoas A e B juntas recebem o dobro do que a pessoa C recebe?


2- Pretende-se pintar 10 bolas iguais usando 4 cores: amarelo, azul, verde e vermelho. De
quantas maneiras distintas podemos fazê-lo sabendo que cada uma das cores amarela e
azul é suficiente para pintar no máximo 3 bolas e as restantes existem em quantidade
suficiente para pintar todas as bolas?


3- Quantas palavras de 9 letras se podem formar com as letras da palavra DIVISORES
sabendo que pelo menos um par de letras iguais aparece em posições consecutivas?
Skizito
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Jul 27, 2014 16:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informatica
Andamento: cursando

Re: [Combinatória] - matemática discreta

Mensagempor alexandre_de_melo » Sex Jul 31, 2015 13:49

1-Como A e B (juntos) recebem o dobro de C, então C receberá 9 e A e B receberão juntos 18 livros.

C poderá receber 9 livros de C^9 _{27} modos.

Uma vez que C já recebeu seus livros, teremos 19 modos para distribuir os livros do par AB.
Temos como opções para AB:(0,18),(1,17),(2,16) ... (18,0).

E portanto, para distribuir os livros teremos 19*C^9 _{27}




2-Vamos chamar as cores amarela e azul de cores especiais, e tratar a quantidade de cores verde e vermelha pelo par ordenado (vd,vm)

Para pintar 6 bolas com cores especiais, teremos 5 modos diferentes de pintar as outras bolas.(0,4),(1,3)...(4,0),
e logo, 5 modos.

Para pintar 5 bolas com cores especiais( 3az e 2 am, ou 2az e 3am ), teremos 6 modos diferentes de pintar as outras bolas.(0,5),(1,4)...(5,0),
e logo 2* 6 modos. Logo, 12 modos

Para pintar 4 bolas com cores especiais( 3az e 1 am, ou 2az e 2am ou 1az e 3 am), teremos 7 modos diferentes de pintar as outras bolas.(0,6),(1,5)...(6,0),
e logo 3* 7 modos.Logo, 21 modos.

Para pintar 3 bolas com cores especiais( 3az ou 2az e 1 am ou 1 az e 2 am ou 3am ), teremos 8 modos diferentes de pintar as outras bolas.(0,7),(1,6)...(7,0),
e logo 4* 8 modos.Logo, 32 modos.

Para pintar 2 bolas com cores especiais( 2 az ou 1z e 1 am ou 2am ), teremos 9 modos diferentes de pintar as outras bolas.(0,8),(1,7)...(8,0),
e logo 3* 9 modos.Logo, 27 modos.

Para pintar 1 bola com cor especial ( 1 am ou 1 az ), teremos 10 modos diferentes de pintar as outras bolas.(0,9),(1,8)...(9,0),
e logo 2* 10 modos.Logo, 10 modos.

Sem usar cor especial, teremos 11 modos diferentes de pintar as outras bolas.(0,10),(1,9)...(10,0),
e logo 11 modos.

Teremos ao todo:
5+12+21+32+27+10+11= 118 modos diferentes!!!!




3-Considere I(j) o conjunto dos anagramas onde o i aparece junto, e S(j) o conjunto dos anagramas onde o s aparece junto.
Temos então:
#I(j)=8!/2, pois considerando o par de i´s como uma letra teremos \frac{P_8}{2}

#S(j)=8!/2, pois considerando o par de s´s como uma letra teremos \frac{P_8}{2}

\#[I(j)\bigcap S(j)]=\frac{7!}{2*2},pois considerando o par de i´s como uma letra e o par de s´s como uma letra teremos \frac{P_7}{2*2}
Observe que acima as letras iguais podem ser trocadas de posição, e por isso, para cada letra igual, dividimos a quantidade de anagramas por 2.



\#[I(j)\bigcup S(j)]= #I(j)+#S(j)-\#[I(j)\bigcap S(j)]
\#[I(j)\bigcup S(j)]= \frac{8!}{2}+\frac{8!}{2}-\frac{7!}{2*2}

=39.060

Ufaaaaaaaaaaaaaaaaaa!!!!!

Grande abraço!!! Fuiiiiii!!!!!
alexandre_de_melo
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Ter Fev 25, 2014 12:00
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. em Matemática
Andamento: formado


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?