• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Princípio Fundamental de Contagem

Princípio Fundamental de Contagem

Mensagempor gabryelc » Qua Mar 20, 2013 11:03

Uma pessoa tem calças, camisas e paletós. As cores das calças são azul, cinza, marrom e bege. As camisas são azul, cinza e marrom, os paletós são cinza, marrom e bege. Determinar de quantas maneiras essa pessoa pode vestir-se usando as três peças (calça, camisa e paletó), todas de cores diferentes.

Eu pensei o seguinte: A pessoa pode escolher 4 calças (azul, cinza, marrom ou bege). Só que, como a cor das roupas deve ser diferente, ela não pode escolher nenhuma camisa e nenhum paletó. Ou seja, ela só pode se vestir com uma calça. Só que no gabarito está 14. COMO ASSIM 14? Que incoerência.
gabryelc
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Mar 20, 2013 10:56
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Princípio Fundamental de Contagem

Mensagempor marinalcd » Qua Mar 20, 2013 18:25

gabryelc escreveu:Uma pessoa tem calças, camisas e paletós. As cores das calças são azul, cinza, marrom e bege. As camisas são azul, cinza e marrom, os paletós são cinza, marrom e bege. Determinar de quantas maneiras essa pessoa pode vestir-se usando as três peças (calça, camisa e paletó), todas de cores diferentes.

Eu pensei o seguinte: A pessoa pode escolher 4 calças (azul, cinza, marrom ou bege). Só que, como a cor das roupas deve ser diferente, ela não pode escolher nenhuma camisa e nenhum paletó. Ou seja, ela só pode se vestir com uma calça. Só que no gabarito está 14. COMO ASSIM 14? Que incoerência.


Bom não existe incoerência nenhuma, pois ela não pode se vestir da mesma cor, mas isso não quer dizer quer ela não possa ter roupas de cores iguais.

Assim, ela pode vestir uma calça azul, com uma camisa cinza e um paletó bege, por exemplo. O que não pode é utilizar duas ou mais da mesma cor.

Assim não importando a cor, temos 4.3.2 = 24 maneiras.
Depois basta subtrair as vezes que as cores se repetem e você achará a resposta.
Tente daqui!!!
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.


cron