• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fatorial

Fatorial

Mensagempor aninhapmello25 » Seg Abr 16, 2018 11:59

Alguém pode me ajudar a resolver esses exercícios de fatorial ?
Anexos
3407249D-01CF-40C9-9F03-DF80CC243D73.jpeg
aninhapmello25
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Abr 16, 2018 11:38
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Fatorial

Mensagempor Gebe » Seg Abr 16, 2018 17:45

4a)
\\
\frac{\left[\left(p+1 \right)! \right]^2}{p!}\\
\\
\frac{\left(p+1 \right)!\left(p+1 \right)!}{p!}\\
\\
\frac{\left(p+1 \right)!\left(p+1 \right)\left(p+1-1 \right)!}{p!}\\
\\
\frac{\left(p+1 \right)!\left(p+1 \right)\left(p \right)!}{p!}\\
\\
(p+1)(p+1)!\;\;ou\;\;(p+1)^2p!


4b)
\\
\frac{m!(m-p)!p!}{(m+2)!(m-p-1)!(p-1)!}\\
\\
\\
\frac{\left[m! \right]\;\left[(m-p)(m-p-1)! \right]\;\left[p(p-1)! \right]}{\left[(m+2)(m+1)m! \right]\;\left[(m-p-1)! \right]\;\left[(p-1)! \right]}\\
\\
\\
\frac{\left[(m-p)\right]\;\left[p \right]}{\left[(m+2)(m+1)\right]}\\
\\
\\
\frac{(m-p)p}{(m+2)(m+1)}\\


4c)
\\
\frac{\left(n! \right)^2(n+1)!\;n!}{(n+2)!\;n!}\\
\\
\\
\frac{\left(n! \right)^2\;(n+1)!\;n!}{(n+2)(n+1)!\;n!}\\
\\
\\
\frac{\left(n! \right)^2}{(n+2)}\;\;ou\;\;\frac{n!\;n!}{(n+2)}


5a)
\\
n(n-1)(n-2)\\
\\
n(n-1)(n-2)\;*\;\frac{1}{1}
\\
\\
n(n-1)(n-2)\;*\;\frac{n-3}{n-3}\\
\\
\\
n(n-1)(n-2)\;*\;\frac{\left( n-3 \right)!}{\left( n-3 \right)!}\\
\\
\\
\frac{n(n-1)(n-2)\left( n-3 \right)!}{\left( n-3 \right)!}
\\
\\
\frac{n!}{(n-3)!}


5b)
\\
(n^2-1)=(n+1)(n-1)\;\;\;e\;\;\;(n^2-4)=(n+2)(n-2)\\
\\
n(n^2-1)(n^2-4)\\
\\
n\;\;(n+1)(n-1)\;\;(n+2)(n-2)\\
\\
reorganizando\\
\\
(n+2)\;(n+1)\;n\;(n-1)\;(n-2)\\
\\
(n+2)\;(n+1)\;n\;(n-1)\;(n-2)\;\;*\frac{(n-3)!}{(n-3)!}\\
\\
\\
\frac{(n+2)\;(n+1)\;n\;(n-1)\;(n-2)\;(n-3)!}{(n-3)!}\\
\\
\frac{(n+2)!}{(n-3)!}\\

Espero ter ajudado, se ficarem duvidas mande msg. Bons estudos.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 140
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: