• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fatorial

Fatorial

Mensagempor aninhapmello25 » Seg Abr 16, 2018 11:59

Alguém pode me ajudar a resolver esses exercícios de fatorial ?
Anexos
3407249D-01CF-40C9-9F03-DF80CC243D73.jpeg
aninhapmello25
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Abr 16, 2018 11:38
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Fatorial

Mensagempor Gebe » Seg Abr 16, 2018 17:45

4a)
\\
\frac{\left[\left(p+1 \right)! \right]^2}{p!}\\
\\
\frac{\left(p+1 \right)!\left(p+1 \right)!}{p!}\\
\\
\frac{\left(p+1 \right)!\left(p+1 \right)\left(p+1-1 \right)!}{p!}\\
\\
\frac{\left(p+1 \right)!\left(p+1 \right)\left(p \right)!}{p!}\\
\\
(p+1)(p+1)!\;\;ou\;\;(p+1)^2p!


4b)
\\
\frac{m!(m-p)!p!}{(m+2)!(m-p-1)!(p-1)!}\\
\\
\\
\frac{\left[m! \right]\;\left[(m-p)(m-p-1)! \right]\;\left[p(p-1)! \right]}{\left[(m+2)(m+1)m! \right]\;\left[(m-p-1)! \right]\;\left[(p-1)! \right]}\\
\\
\\
\frac{\left[(m-p)\right]\;\left[p \right]}{\left[(m+2)(m+1)\right]}\\
\\
\\
\frac{(m-p)p}{(m+2)(m+1)}\\


4c)
\\
\frac{\left(n! \right)^2(n+1)!\;n!}{(n+2)!\;n!}\\
\\
\\
\frac{\left(n! \right)^2\;(n+1)!\;n!}{(n+2)(n+1)!\;n!}\\
\\
\\
\frac{\left(n! \right)^2}{(n+2)}\;\;ou\;\;\frac{n!\;n!}{(n+2)}


5a)
\\
n(n-1)(n-2)\\
\\
n(n-1)(n-2)\;*\;\frac{1}{1}
\\
\\
n(n-1)(n-2)\;*\;\frac{n-3}{n-3}\\
\\
\\
n(n-1)(n-2)\;*\;\frac{\left( n-3 \right)!}{\left( n-3 \right)!}\\
\\
\\
\frac{n(n-1)(n-2)\left( n-3 \right)!}{\left( n-3 \right)!}
\\
\\
\frac{n!}{(n-3)!}


5b)
\\
(n^2-1)=(n+1)(n-1)\;\;\;e\;\;\;(n^2-4)=(n+2)(n-2)\\
\\
n(n^2-1)(n^2-4)\\
\\
n\;\;(n+1)(n-1)\;\;(n+2)(n-2)\\
\\
reorganizando\\
\\
(n+2)\;(n+1)\;n\;(n-1)\;(n-2)\\
\\
(n+2)\;(n+1)\;n\;(n-1)\;(n-2)\;\;*\frac{(n-3)!}{(n-3)!}\\
\\
\\
\frac{(n+2)\;(n+1)\;n\;(n-1)\;(n-2)\;(n-3)!}{(n-3)!}\\
\\
\frac{(n+2)!}{(n-3)!}\\

Espero ter ajudado, se ficarem duvidas mande msg. Bons estudos.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 134
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59