• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Combinatória] Quantidade de números inteiros num intervalo.

[Combinatória] Quantidade de números inteiros num intervalo.

Mensagempor Zeh Edu » Seg Jan 06, 2014 20:12

Olá! Estou tendo dificuldade num exercício de combinatória tirado de um livro que apresenta as resoluções dos exercícios.

Quantos números inteiros entre 100 e 999 são ímpares e possuem três dígitos distintos?

Fiz dessa forma:
O algarismo das unidades pode ser 1; 3; 5; 7 e 9 . 5 opções.
O algarismo das dezenas pode ser qualquer número entre 0 e 9 menos o algarismo das unidades. 9 opções.
O algarismo das centenas pode ser qualquer número entre 1 e 9 menos os algarismos da dezena e da unidade. 7 opções.
Assim, temos que: 5*9*7 = 315. Mas, o livro dá a resposta de 320 e mostra a seguinte solução:

O algarismo das unidades pode ser escolhido de 5 modos, o das centenas de 8 modos (deve ser diferente de zero e diferente do algarismo das unidades) e o das dezenas de 8 modos (deve ser diferente dos outros dois algarismos). Logo, a resposta é 5*8*8 = 320.

Eu entendi solução apresentada pelo livro, porém não consigo identificar o erro no meu raciocínio inicial; pois, apesar de ter tomado as restrições em ordem diferente, as segui conforme o enunciado pediu.

Obrigado pela ajuda.
PS. A quem possa interessar, o livro em questão é "Análise Combinatória e Probabilidade", dos autores Morgado, Pitombeira, Paulo Cezar e Fernandez da editora SBM.
Zeh Edu
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Mai 08, 2012 01:35
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibulando para engenharia
Andamento: cursando

Re: [Combinatória] Quantidade de números inteiros num interv

Mensagempor anderson_wallace » Seg Jan 06, 2014 20:51

Zeh Edu escreveu:O algarismo das dezenas pode ser qualquer número entre 0 e 9 menos o algarismo das unidades. 9 opções.
O algarismo das centenas pode ser qualquer número entre 1 e 9 menos os algarismos da dezena e da unidade. 7 opções.
Assim, temos que: 5*9*7 = 315


Como vc já observou, o algarismo das centenas não pode ser zero, mas o da dezena pode, e aí é que está o erro. Nos casos em que o algarismo da dezena for 0, há 8 opções para o algarismo das centenas. É um erro bem sutil, mas vc pode evitá-lo se avaliar primeiro as ordens com mais restrições, assim como foi feito na resolução do livro.
anderson_wallace
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Seg Dez 30, 2013 17:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ciência e Tecnologia
Andamento: cursando

Re: [Combinatória] Quantidade de números inteiros num interv

Mensagempor Zeh Edu » Ter Jan 07, 2014 00:48

Entendi agora, o algarismo da dezena apresenta um caso no qual o algarismo das centenas passa a apresentar 8 casos (ao invés de 9). Pelo meu raciocínio o correto seria considerar quando o algarismo das dezenas é zero e quando ele é diferente de zero, mas isso daria mais trabalho. Realmente, combinatória exige que se identifique bem as restrições.

Muito obrigado pela ajuda!
Zeh Edu
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Mai 08, 2012 01:35
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibulando para engenharia
Andamento: cursando


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.