• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Combinatória]

[Combinatória]

Mensagempor Ed_29 » Qui Ago 09, 2012 21:42

Três rapases e duas moças vão ao cinema e desejam sentar-se,os cinco,lado a lado, na mesma fila. O número de maneiras pelas quais eles podem distribuir-se nos assentos de modo que as duas moças fiquem juntas, uma ao lado da outra, é igual a
a)2
b)4
c)24
d)48
e)120

pessoal não consegui resolver. alguém sabe?
Ed_29
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Seg Ago 06, 2012 18:21
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em química
Andamento: formado

Re: [Combinatória]

Mensagempor fraol » Sex Ago 10, 2012 12:12

Bom dia,

Uma questão que tem um modelo de solução semelhante está em Dificil questao de probabilidade.

Você pode usar o mesmo raciocínio:

1) Coloque as duas moças em uma poltrona (gde) só. Logo você vai permutar 4 lugares = 4! .

2) As duas moças também podem trocar de lugar entre si, logo 2! permutações.

Para responder basta multiplicar 1) e 2) acima.

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: [Combinatória]

Mensagempor Ed_29 » Sáb Ago 11, 2012 14:46

fraol escreveu:Bom dia,

Uma questão que tem um modelo de solução semelhante está em Dificil questao de probabilidade.

Você pode usar o mesmo raciocínio:

1) Coloque as duas moças em uma poltrona (gde) só. Logo você vai permutar 4 lugares = 4! .

2) As duas moças também podem trocar de lugar entre si, logo 2! permutações.

Para responder basta multiplicar 1) e 2) acima.

.


Boa tarde!
não entendi a 1º colocação?

1) Coloque as duas moças em uma poltrona (gde) só. Logo você vai permutar 4 lugares = 4!
Ed_29
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Seg Ago 06, 2012 18:21
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em química
Andamento: formado

Re: [Combinatória]

Mensagempor fraol » Sáb Ago 11, 2012 15:24

Boa tarde,

não entendi a 1º colocação?

1) Coloque as duas moças em uma poltrona (gde) só. Logo você vai permutar 4 lugares =


Bom como são cinco pessoas sendo duas moças que devem permanecer juntas, fazemos de conta que elas estão grudadas, sentadas juntas. Assim você deve permutar, trocar, 4 posições, as tais 4! permutações. Como as duas moças que estão juntas também podem intercambiar seus lugares, temos 2! = 2 permutações delas. Aplicando o princípio multiplicativo => 4! . 2! .

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}