• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Conjunto dos números Reais

Conjunto dos números Reais

Mensagempor CarolineCecy » Sex Abr 14, 2017 03:30

Sobre as propriedades que tornam o conjunto dos números Reais um "corpo ordenado", gostaria de saber se a "Compatibilidade da ordem com a multiplicação", expressa como: "se x≤y e 0≤z, então x.z≤y.z" (tomando x, y e z como números Reais), também pode ser expressa como: "se x<y e z<0, então x.z>y.z" ou se esta última sentença constitui outra propriedade, e qual seria? Ps: É uma questão de "nomenclatura" mesmo, digamos assim, preciso NOMEAR esta propriedade da última sentença que digitei, e não necessariamente demonstrar.
CarolineCecy
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Abr 14, 2017 02:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Conjunto dos números Reais

Mensagempor adauto martins » Dom Jul 16, 2017 13:41

x\prec y\Rightarrow x+(-y)\prec y+(-y)=0,x-y\prec 0...,como z\prec 0\Rightarrow (x-y).z\succ 0.z=0,(x-y).z\succ 0...,usando a propriedade distributiva da mulplicaçao,teremos:
x.z-y.z\succ 0\Rightarrow x.z\succ y.z...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 702
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}