• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Conjunto com 3 elementos com o X no centro

Conjunto com 3 elementos com o X no centro

Mensagempor DIEGO BR » Qui Jan 21, 2016 05:21

Considere 49 leitores e os livros A, B e C. Sabe-se que, dos leitores que leram apenas dois livros, exatamente 7 leram A e B, exatamente 9 leram A e C, e exatamente 12 leram B e C. Se exatamente 25 leitores leram o livro A, 27 leitores leram o livro B e 33 leitores leram o livro C, então é verdade que o número de leitores que leram todos os três livros é?
DIEGO BR
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Jan 21, 2016 04:56
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Conjunto com 3 elementos com o X no centro

Mensagempor Marcos Gomes » Sáb Jun 04, 2016 17:55

DIEGO BR escreveu:Considere 49 leitores e os livros A, B e C. Sabe-se que, dos leitores que leram apenas dois livros, exatamente 7 leram A e B, exatamente 9 leram A e C, e exatamente 12 leram B e C. Se exatamente 25 leitores leram o livro A, 27 leitores leram o livro B e 33 leitores leram o livro C, então é verdade que o número de leitores que leram todos os três livros é?


Utilize a fórmula n(A U B U C) = n(A) + n(B) + n(C) - n(A ∩ B) - n(A ∩ C) - n(B ∩ C) + n(A ∩ B ∩ C)
Para entender como se chega a essa fórmula, acesse o link: http://www.cinoto.com.br/website/index.php/conj?id=3207

Chamaremos de “X” o valor que estamos procurando. Assim, “X” leram os livros A, B e C:
n(A U B U C) = 49 (representa o total de leitores)
n(A) = 25 (representa o número de leitores do livro A)
n(B) = 27 (representa o número de leitores do livro B)
n(C) = 33 (representa o número de leitores do livro C)
n(A ∩ B) = 7 + X (representa o número de leitores que leram o livro A e o livro B)
n(A ∩ C) = 9 + X (representa o número de leitores que leram o livro A e o livro C)
n(B ∩ C) = 12 + X (representa o número de leitores que leram o livro B e o livro C)
n(A ∩ B ∩ C) = X (representa o número de leitores que leram os três livros)

Agora é só resolver as expressões

Observação: Muito cuidado com a montagem da expressão e com as regras de sinais:
n(A U B U C) = n(A) + n(B) + n(C) - n(A ∩ B) - n(A ∩ C) - n(B ∩ C) + n(A ∩ B ∩ C)
49 = 25 + 27 + 33 – (7 + X) – (9 + X) – (12 + X) + X
49 = 85 – 7 – X – 9 – X – 12 – X + X
49 = 85 – 7 – 9 – 12 – X – X – X + X
49 = 85 – 28 – 3X + X
49 = 57 – 2X
2X = 57 – 49
2X = 8
2X = 8 ÷ 2
X = 4
Marcos Gomes
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Jun 04, 2016 17:19
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 12:41

pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.

78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?


Assunto: dúvida em uma questão em regra de 3!
Autor: Douglasm - Qui Jul 01, 2010 13:16

Observe o raciocínio:

10 pessoas - 9 dias - 135 toneladas

1 pessoa - 9 dias - 13,5 toneladas

1 pessoa - 1 dia - 1,5 toneladas

40 pessoas - 1 dia - 60 toneladas

40 pessoas - 30 dias - 1800 toneladas


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:18

pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:21

leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.

valeu meu camarada.