• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Conjunto com 3 elementos com o X no centro

Conjunto com 3 elementos com o X no centro

Mensagempor DIEGO BR » Qui Jan 21, 2016 05:21

Considere 49 leitores e os livros A, B e C. Sabe-se que, dos leitores que leram apenas dois livros, exatamente 7 leram A e B, exatamente 9 leram A e C, e exatamente 12 leram B e C. Se exatamente 25 leitores leram o livro A, 27 leitores leram o livro B e 33 leitores leram o livro C, então é verdade que o número de leitores que leram todos os três livros é?
DIEGO BR
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Jan 21, 2016 04:56
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Conjunto com 3 elementos com o X no centro

Mensagempor Marcos Gomes » Sáb Jun 04, 2016 17:55

DIEGO BR escreveu:Considere 49 leitores e os livros A, B e C. Sabe-se que, dos leitores que leram apenas dois livros, exatamente 7 leram A e B, exatamente 9 leram A e C, e exatamente 12 leram B e C. Se exatamente 25 leitores leram o livro A, 27 leitores leram o livro B e 33 leitores leram o livro C, então é verdade que o número de leitores que leram todos os três livros é?


Utilize a fórmula n(A U B U C) = n(A) + n(B) + n(C) - n(A ∩ B) - n(A ∩ C) - n(B ∩ C) + n(A ∩ B ∩ C)
Para entender como se chega a essa fórmula, acesse o link: http://www.cinoto.com.br/website/index.php/conj?id=3207

Chamaremos de “X” o valor que estamos procurando. Assim, “X” leram os livros A, B e C:
n(A U B U C) = 49 (representa o total de leitores)
n(A) = 25 (representa o número de leitores do livro A)
n(B) = 27 (representa o número de leitores do livro B)
n(C) = 33 (representa o número de leitores do livro C)
n(A ∩ B) = 7 + X (representa o número de leitores que leram o livro A e o livro B)
n(A ∩ C) = 9 + X (representa o número de leitores que leram o livro A e o livro C)
n(B ∩ C) = 12 + X (representa o número de leitores que leram o livro B e o livro C)
n(A ∩ B ∩ C) = X (representa o número de leitores que leram os três livros)

Agora é só resolver as expressões

Observação: Muito cuidado com a montagem da expressão e com as regras de sinais:
n(A U B U C) = n(A) + n(B) + n(C) - n(A ∩ B) - n(A ∩ C) - n(B ∩ C) + n(A ∩ B ∩ C)
49 = 25 + 27 + 33 – (7 + X) – (9 + X) – (12 + X) + X
49 = 85 – 7 – X – 9 – X – 12 – X + X
49 = 85 – 7 – 9 – 12 – X – X – X + X
49 = 85 – 28 – 3X + X
49 = 57 – 2X
2X = 57 – 49
2X = 8
2X = 8 ÷ 2
X = 4
Marcos Gomes
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Jun 04, 2016 17:19
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: