• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Conjuntos] Dúvida em exercício.

[Conjuntos] Dúvida em exercício.

Mensagempor Debora Bruna » Seg Jan 11, 2016 18:48

Quando li esse exercício,((UFSM-RS) Acrescentando-se dois novos elementos a um conjunto A, verificou-se que o número de subconjuntos de A teve um acréscimo de 384. Quantos elementos possuía originalmente o conjunto A?) comecei da seguinte forma:
Acrescentando-se dois novos elementos a um conjunto A
Conjunto A = n, acrescentando-se 2, vai n+2.
o número de subconjuntos de A teve um acréscimo de 384
n=2^n. e n+2= 2^n+2
começando a resolver:
n+2= 2^n+2 + 384.
Parei aqui.
A resolução que encontrei na internet é essa:
2n+2 = 2n+384
2n. 2^2 = 2n + 384
4. 2n= 2n+384
2n= 384/3
2n=128
2n= 2^7
n=7
E depois de torrar todos os neurônios, a entendi. Só que porque não começa com: ? Já que, se o número de elementos de um conjunto n = 2^n, então o número de elementos de um conjunto n+2 = 2^n+2, então deveria prosseguir da seguinte forma n+2= 2^n+2 + 384, não é?
Debora Bruna
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Dez 15, 2014 17:49
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Conjuntos] Dúvida em exercício.

Mensagempor DanielFerreira » Dom Fev 07, 2016 15:05

Debora Bruna escreveu:(UFSM-RS) Acrescentando-se dois novos elementos a um conjunto A, verificou-se que o número de subconjuntos de A teve um acréscimo de 384. Quantos elementos possuía originalmente o conjunto A?


Vamos supor que o conjunto A tenha n elementos, então a quantidade de subconjuntos do conjunto A é dado por 2^n.

Ora, se acrescentamos dois elementos ao conjunto A, podemos concluir que o número de subconjuntos do "novo" conjunto será dado por 2^{n + 2}.

Do enunciado,

\\ 2^{n + 2} = 2^n + 384 \\\\ 2^n \cdot 2^2 = 2^n + 384 \\\\ 4 \cdot 2^n - 2^n = 384 \\\\ 2^n \cdot (4 - 1) = 384 \\\\ 2^n \cdot 3 = 384 \\\\ 2^n = 128 \\\\ 2^n = 2^7 \\\\ \boxed{n = 7}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1728
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59