• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Conjuntos] Confusão em teoria dos conjuntos numa questão.

[Conjuntos] Confusão em teoria dos conjuntos numa questão.

Mensagempor Debora Bruna » Seg Jan 11, 2016 17:44

Congratulations mestres do Ajuda matemática! :y:

Então, resolvendo esse exercício
fgv.png
exercício e gabarito
, melhor dizendo, TENTANDO resolver, acabei não conseguindo e parti em busca do gabarito, que também está no anexo do exercício. A questão é, não concordei com a resolução, pois não sei se realmente está "errado" ou se eu -mais uma vez- me confundi na teoria. Por exemplo, quando o exercício "diz" que VI. 640 filiados votaram a favor de C, mas não de A ou de B, ele coloca os 640 todinho no C, e eu aprendi que esse valor não é somente os filiados que votaram em C, e sim está incluso os outros 2 (A e B). Do mesmo modo que em B. Segue outro anexo com o meu raciocínio.
vn.png
minha resoluçao
Nele, eu fiz à primeira vista, fiz também as hachuras de cada item, pois esse seria o meu outro raciocínio que vai de acordo com o gabarito, se eu realmente colocasse os respectivos valores em cada mancha. Resumindo meus dois raciocínios: 1° pensei que os valores dados não eram exclusivos para cada conjunto, e assim desenvolvi como segue no anexo. Já na 2° pensei baseado nas hachuras que fiz, e assim daria certo. Mas quero saber o porquê do 1° raciocínio não dar certo.

Conto com a paciência e a genialidade de vocês, que sem dúvidas são quase inevitáveis :rose: :coffee:
Debora Bruna
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Dez 15, 2014 17:49
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Conjuntos] Confusão em teoria dos conjuntos numa questã

Mensagempor DanielFerreira » Sáb Jan 23, 2016 16:44

Olá Débora Bruna, boa tarde!

Teu equívoco ocorre no seguinte raciocínio:

Debora Bruna escreveu:(...) quando o exercício "diz" que VI. 640 filiados votaram a favor de C, mas não de A ou de B, ele coloca os 640 todinho no C, e eu aprendi que esse valor não é somente os filiados que votaram em C, e sim está incluso os outros 2 (A e B)...


A parte em negrito que informa: mas não de A ou de B, indica que devemos excluir A \cup B; ou seja, SOMENTE os que votaram em C...
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1682
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D


cron