• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[conjutos]uepa 2014

[conjutos]uepa 2014

Mensagempor mmoreiraellen » Qua Fev 26, 2014 11:52

Texto X
As atividades de comunicação humana são
plurais e estão intimamente ligadas às suas
necessidades de sobrevivência. O problema de
contagem, por exemplo, se confunde com a própria
história humana no decorrer dos tempos. Assim
como para os índios mundurucus, do sul do Pará, os
waimiri-atroari, contam somente de um até cinco,
adotando os seguintes vocábulos: awynimi é o
número 1, typytyna é o 2, takynima é o 3,
takyninapa é o 4, e , finalmente, warenipa é o 5.
(Texto Adaptado: Scientific American – Brasil, Etnomatática. Edição Especial,
N0 11,ISSN 1679-5229)

30. Considere A o conjunto formado pelos números
utilizados no sistema de contagem dos waimiriatroari,
ou seja, A =     . Nestas
condições, o número de elementos da relação
R1 = {(x,y) Î A×A ½y ³ x} é igual a:
a 5
b 10
c 15
d 20
e 25

31.Considere as funções polinomiais do primeiro grau
f e g definidas de A em A, conjunto formado
pelos números utilizados no sistema de
contagem dos waimiri-atroari, ou seja, A =
    . Se os pares ordenados (1,1) e (5,5)
pertencem a f e os pares ordenados (1,5) e (5,1)
pertencem a g, então é correto afirmar que:
a) não existe nenhum par ordenado de A x A que
satisfaça f e g simultaneamente.
b )existe um único par ordenado de A x A que
satisfaz f e g simultaneamente.
c) existem dois pares ordenados de A x A que
satisfazem f e g simultaneamente.
d) existem três pares ordenados de A x A que
satisfazem f e g simultaneamente.
e) existem quatro pares ordenados de A x A que
satisfazem f e g simultaneamente.
mmoreiraellen
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Fev 26, 2014 11:11
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [conjutos]uepa 2014

Mensagempor pamelacarolinne » Seg Mai 12, 2014 10:38

Questão 30.
É preciso montar os conjuntos e fazer a relação obedecendo a condição .
AxA = (1,1) (1,2), (1,3), (1,4) (1,5) ... E assim com os demais números. Mas como há a condição ( y maior ou igual a x), você pega os seguintes pares ordenados :
(1,1) (1,2) (1,3) (1,4) (1,5) (2,2) (2,3) (2,4) (2,5) (3,3) (3,4) (3,5) (4,4) (4,5) (5,5) , ou seja, 15 pares ordenados.
pamelacarolinne
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Mai 12, 2014 10:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Direito
Andamento: cursando


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D