• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sobre demonstração em conjuntos numéricos.

Sobre demonstração em conjuntos numéricos.

Mensagempor Douglas2013 » Seg Mar 04, 2013 20:11

Olá pessoal, estou com uma dúvida.

Enunciado: Dados dois números x e y reais e positivos, chama-se média aritmética de x com y o real a= \frac{x+y}{2} e chama-se média geométrica o real g=\sqrt[]{xy}. Mostre que a\geq g para todos x , y\in \Re positivo.

Eu comecei a responder da seguinte maneira: considerei um numero K, tal que k=xy. Ai fiz :

\frac{x+y}{2} \geq\sqrt[]{xy} ---------------------- ({\frac{x+y}{2}})^{2} \geq({\sqrt[]{xy}})^{2} ----------------\frac{{x}^{2}+ 2xy + {x}^{2}}{4} \geq xy e como k=xy ficou {{x}^{2}+ 2k + {x}^{2}}{} \geq 4k. Porém eu fiquei estagnado nessa parte, não sei se é porque minha solução esta errada ou por eu estar esquecendo algo ou não sei mais o que. O fato é que fiquei tentando resolver esse problema por mais ou menos 105 minutos até chegar nessa solução. Porém não sei se ela esta certa. Por favor, ajudem -me.
Douglas2013
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Mar 02, 2013 11:27
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Sobre demonstração em conjuntos numéricos.

Mensagempor e8group » Seg Mar 04, 2013 20:42

Pense assim , claramente (x-y)^2 = x^2 -2xy +y^2 \geq 0 ;somando-se 4xy na desigualdade ,
x^2 -2xy +y^2 + 4xy \geq 4xy (que também é verdade) .

Como x^2 -2xy +y^2 + 4xy  = x^2 + 2xy +y^2 = (x+y)^2 ,resulta x+y \geq \sqrt{4 xy} e portanto (x+y)/2 \geq \sqrt{xy}
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Sobre demonstração em conjuntos numéricos.

Mensagempor Douglas2013 » Ter Mar 05, 2013 16:04

santhiago escreveu:Pense assim , claramente (x-y)^2 = x^2 -2xy +y^2 \geq 0 ;somando-se 4xy na desigualdade ,
x^2 -2xy +y^2 + 4xy \geq 4xy (que também é verdade) .

Como x^2 -2xy +y^2 + 4xy  = x^2 + 2xy +y^2 = (x+y)^2 ,resulta x+y \geq \sqrt{4 xy} e portanto (x+y)/2 \geq \sqrt{xy}



Eu entendi o que tu fez, porém não entendi porque tu iniciiou a demonstração pelo quadrado da diferença. poderia me explicar?
Douglas2013
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Mar 02, 2013 11:27
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.