• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida sobre determinar a igualdade (3x-1)/(2x-6)<3

Duvida sobre determinar a igualdade (3x-1)/(2x-6)<3

Mensagempor Xremix31 » Sáb Abr 09, 2022 16:27

Olá. Seria possível ajudarem-me a resolver os intervalos desta igualdade. Eu cheguei até (113x)/(2x-6)<(342)/(2x-6) mas não sei se está correto. E não consigo avançar desta parte por causa dos denominadores não sei o que fazer.
Xremix31
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Jun 22, 2021 13:59
Formação Escolar: GRADUAÇÃO
Área/Curso: Informática Web
Andamento: cursando

Re: Duvida sobre determinar a igualdade (3x-1)/(2x-6)<3

Mensagempor Sobreira » Dom Jun 19, 2022 19:00

\frac{\left(3x-1 \right)}{\left(2x-6 \right)} < 3

\frac{\left(3x-1 \right)}{\left(2x-6 \right)} -3 < 0

\frac{\left(3x-1) - \left(6x-18)}{\left(2x-6 \right)} < 0

\frac{\left(-3x+17)}{\left(2x-6 \right)} < 0

-3x+17 = 0

x=\frac{17}{3}

17-3.jpg
17-3.jpg (5.49 KiB) Exibido 6202 vezes


2x-6=0

x=3

X não pode assumir valor igual a 3

3.jpg
3.jpg (4.86 KiB) Exibido 6202 vezes


sl.jpg


S=\left[x \epsilon\ \Re} | 17/3<x<3 \right]
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado


Voltar para Inequações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}