• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação

Inequação

Mensagempor Claudin » Qua Abr 25, 2018 14:13

Considere as funções reais dadas por f(x)= -x^2+11x-10 e g(x)= 2x-17. A quantidade de números naturais n para os quais f(n)\geq0 e g(n)\leq0 é:

a) 7
b) 8
c) 9
d) 10
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Inequação

Mensagempor DanielFerreira » Seg Abr 30, 2018 01:30

Olá Claudin!

Claudin escreveu:Considere as funções reais dadas por f(x)= -x^2+11x-10 e g(x)= 2x-17. A quantidade de números naturais n para os quais f(n)\geq0 e g(n)\leq0 é:

a) 7
b) 8
c) 9
d) 10


- quanto à função \mathbf{f} temos:

\\ \mathsf{f(n) \geq 0} \\\\ \mathsf{- n^2 + 11n - 10 \geq 0} \\\\ \mathsf{n^2 - 11n + 10 \leq 0} \\\\ \mathsf{(n - 10)(n - 1) \leq 0}

Com efeito,

___-___[1]____+_____[10]____-_____


Portanto, \mathsf{S_1 = \{ n \in \mathbb{N} ; 1 \leq n \leq 10\}}


- quanto à função \mathbf{g}:

\\ \mathsf{g(n) \leq 0} \\\\ \mathsf{2n - 17 \leq 0} \\\\ \mathsf{n \leq \dfrac{17}{2}}

Daí, \mathsf{S_2 = \{ n \in \mathbb{N} ; n \leq \dfrac{17}{2} \}}


Por fim, tiramos que:

\boxed{\mathsf{S_1 \cap S_2 = \{ 1, 2, 3, 4, 5, 6, 7, 8 \}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1675
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Inequação

Mensagempor DanielFerreira » Seg Abr 30, 2018 01:30

Olá Claudin!

Claudin escreveu:Considere as funções reais dadas por f(x)= -x^2+11x-10 e g(x)= 2x-17. A quantidade de números naturais n para os quais f(n)\geq0 e g(n)\leq0 é:

a) 7
b) 8
c) 9
d) 10


- quanto à função \mathbf{f} temos:

\\ \mathsf{f(n) \geq 0} \\\\ \mathsf{- n^2 + 11n - 10 \geq 0} \\\\ \mathsf{n^2 - 11n + 10 \leq 0} \\\\ \mathsf{(n - 10)(n - 1) \leq 0}

Com efeito,

___-___[1]____+_____[10]____-_____


Portanto, \mathsf{S_1 = \{ n \in \mathbb{N} ; 1 \leq n \leq 10\}}


- quanto à função \mathbf{g}:

\\ \mathsf{g(n) \leq 0} \\\\ \mathsf{2n - 17 \leq 0} \\\\ \mathsf{n \leq \dfrac{17}{2}}

Daí, \mathsf{S_2 = \{ n \in \mathbb{N} ; n \leq \dfrac{17}{2} \}}


Por fim, tiramos que:

\boxed{\mathsf{S_1 \cap S_2 = \{ 1, 2, 3, 4, 5, 6, 7, 8 \}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1675
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Inequação

Mensagempor Claudin » Seg Abr 30, 2018 12:51

Obrigado
:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Inequações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: