por Luizsvg » Qui Jan 31, 2013 02:15
Não sei se posso criar um tópico aqui mas se poderam apagar se estiver no lugar errado
Alguém poderia me ajudar com essa questão aqui:
O maior valor inteiro de x que? satisfaz à inequação 3x/4 - 3/2 < 3/4 - 5x - 7/4
-
Luizsvg
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Jan 31, 2013 02:09
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: Informatica
- Andamento: cursando
por Rafael16 » Qui Jan 31, 2013 12:56
eu resolvi esse problema, mas o latex aqui ta com problemas...
-
Rafael16
- Colaborador Voluntário

-
- Mensagens: 154
- Registrado em: Qui Mar 01, 2012 22:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Análise de Sistemas
- Andamento: cursando
por Luizsvg » Qui Jan 31, 2013 13:11
Me passa ai por favor mano é pra hoje, tô correndo contra o tempo
-
Luizsvg
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Jan 31, 2013 02:09
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: Informatica
- Andamento: cursando
por Rafael16 » Qui Jan 31, 2013 13:29
-
Rafael16
- Colaborador Voluntário

-
- Mensagens: 154
- Registrado em: Qui Mar 01, 2012 22:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Análise de Sistemas
- Andamento: cursando
por Luizsvg » Qui Jan 31, 2013 14:02
Valeu irmão já ia pra recuperação mano ai vc me iluminou só tinha dúvida nessa, mas vc tem certeza que a resposta é 0?
-
Luizsvg
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Jan 31, 2013 02:09
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: Informatica
- Andamento: cursando
por DanielFerreira » Qui Jan 31, 2013 23:13

Logo, o maior inteiro, como já afirmado pelo
Rafael16 é o
zero. Pois, os outros elementos do conjunto solução são todos negativos!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Inequações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [INEQUAÇÂO] Inequação do tipo: (a+ x < b + x < c + x)
por Diofanto » Dom Fev 03, 2013 19:55
- 7 Respostas
- 6072 Exibições
- Última mensagem por Diofanto

Qui Fev 14, 2013 23:45
Inequações
-
- [inequação modular] DÚVIDA SIMPLES EM INEQUAÇÃO MODULAR
por brunocunha2008 » Sex Set 13, 2013 22:37
- 1 Respostas
- 7226 Exibições
- Última mensagem por Rafael Henrique

Qui Jan 03, 2019 14:39
Inequações
-
- Inequação
por Luna » Seg Set 28, 2009 18:55
- 4 Respostas
- 3574 Exibições
- Última mensagem por Molina

Ter Set 29, 2009 16:50
Sistemas de Equações
-
- Inequação
por Luna » Ter Set 29, 2009 16:48
- 1 Respostas
- 2033 Exibições
- Última mensagem por Molina

Qua Set 30, 2009 00:39
Sistemas de Equações
-
- Inequação
por Bebel » Dom Ago 08, 2010 00:50
- 0 Respostas
- 1561 Exibições
- Última mensagem por Bebel

Dom Ago 08, 2010 00:50
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.