• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação do 2º grau

Inequação do 2º grau

Mensagempor Rodrigo Will » Seg Mar 27, 2017 20:26

Dê o valor de 'm' para que a inequação:
X²+2x+m>10
Seja válida para qualquer valor de X.
Nesta questão eu já tentei igualar a expressão em 0, tornando assim uma equação do 2º grau e resolvendo passo-a-passo; achando DELTA e depois aplicando BHASKÁRA, mas não consegui chegar em um resultado correto. Então gostaria de aprender a resolver uma questão desse tipo, passo-a-passo. Grato!
A)m<0;
B)m>11;
C)0<m<9;
D)9<m<11.
Editado pela última vez por Rodrigo Will em Ter Mar 28, 2017 07:30, em um total de 1 vez.
Rodrigo Will
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Mar 27, 2017 20:09
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Inequação do 2º grau

Mensagempor petras » Ter Mar 28, 2017 01:51

Se você tem o gabarito poste para facilitar aos que lhe ajudam
petras
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 58
Registrado em: Sex Jan 22, 2016 21:19
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Inequação do 2º grau

Mensagempor DanielFerreira » Sáb Abr 01, 2017 19:26

Olá Rodrigo, boa noite!

Rodrigo Will escreveu:Dê o valor de 'm' para que a inequação:
X²+2x+m>10
Seja válida para qualquer valor de X.
A)m<0;
B)m>11;
C)0<m<9;
D)9<m<11.


A inequação em questão é a quadrática. Resolvendo-a como uma equação do 2º grau, temos três possibilidades para o discriminante: \mathbf{\Delta < 0}, \ \mathbf{\Delta = 0 \ e \ \mathbf{\Delta > 0}}.

Ora, se delta for menor que zero a equação não terá raízes reais. Dito isto, podemos tirar que o discriminante de \mathbf{x^2 + 2x + (m - 10) = 0} deve ser menor que zero; afinal, \mathbf{x^2 + 2x + (m - 10)} deve ser maior que zero, e, se \Delta < 0 isto será sempre verdade (pois não terá um "x" satisfazendo a condição).

Segue,

\\ \mathsf{\Delta < 0} \\\\ \mathsf{b^2 - 4ac < 0} \\\\ \mathsf{4 - 4 \cdot 1 \cdot (m - 10) < 0} \\\\ \mathsf{4 - 4m + 40 < 0} \\\\ \mathsf{- 4m < - 44} \\\\ \mathsf{4m > 44} \\\\ \boxed{\mathsf{m > 11}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1728
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Inequação do 2º grau

Mensagempor Maloch45678 » Seg Mai 07, 2018 08:22

É um fórum muito bom, graças à informação útil.
Maloch45678
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Mai 07, 2018 07:29
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando


Voltar para Inequações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}