por Raquel299 » Seg Mar 09, 2015 10:57
Resolva a seguinte inequação: |3x - 1| < 2
-
Raquel299
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Dom Mar 08, 2015 14:54
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Ciências Biológicas
- Andamento: cursando
por Cleyson007 » Seg Mar 09, 2015 21:21
Oi Raquel!
Vou utilizar a seguinte definição: se |x| < k então, – k < x < k. Logo,
-2 < 3x - 1 < 2
-2 + 1 < 3x < 2 + 1
-1 < 3x < 3
Dividindo tudo por "3", temos: -1/3 < x < 1
S: { x pertence a IR | -1/3 < x < 1}
Espero ter lhe ajudado.
Surgindo dúvidas estou a disposição

-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por Raquel299 » Sex Abr 10, 2015 10:46
Cleyson007 escreveu:Oi Raquel!
Vou utilizar a seguinte definição: se |x| < k então, – k < x < k. Logo,
-2 < 3x - 1 < 2
-2 + 1 < 3x < 2 + 1
-1 < 3x < 3
Dividindo tudo por "3", temos: -1/3 < x < 1
S: { x pertence a IR | -1/3 < x < 1}
Espero ter lhe ajudado.
Surgindo dúvidas estou a disposição

Obrigada !
-
Raquel299
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Dom Mar 08, 2015 14:54
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Ciências Biológicas
- Andamento: cursando
por Raquel299 » Sex Abr 10, 2015 10:48
Raquel299 escreveu:Cleyson007 escreveu:Oi Raquel!
Vou utilizar a seguinte definição: se |x| < k então, – k < x < k. Logo,
-2 < 3x - 1 < 2
-2 + 1 < 3x < 2 + 1
-1 < 3x < 3
Dividindo tudo por "3", temos: -1/3 < x < 1
S: { x pertence a IR | -1/3 < x < 1}
Espero ter lhe ajudado.
Surgindo dúvidas estou a disposição

Obrigada !
Obrigada Cleyson!
-
Raquel299
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Dom Mar 08, 2015 14:54
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Ciências Biológicas
- Andamento: cursando
Voltar para Inequações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Resolva, em R, a seguinte inequação
por andersontricordiano » Sex Out 28, 2011 16:06
- 4 Respostas
- 2632 Exibições
- Última mensagem por TheoFerraz

Sex Out 28, 2011 16:55
Logaritmos
-
- Resolva em R a seguinte inequação:
por andersontricordiano » Sex Out 28, 2011 19:47
- 1 Respostas
- 1424 Exibições
- Última mensagem por Aliocha Karamazov

Sex Out 28, 2011 23:11
Logaritmos
-
- Resolva ,em R a seguinte inequação logaritmica
por andersontricordiano » Seg Nov 28, 2011 22:54
- 1 Respostas
- 1605 Exibições
- Última mensagem por eds_eng

Seg Dez 05, 2011 19:15
Logaritmos
-
- Resolva em R a seguinte inequação logarítmica
por andersontricordiano » Qua Nov 30, 2011 11:26
- 1 Respostas
- 1861 Exibições
- Última mensagem por fraol

Dom Dez 11, 2011 20:38
Logaritmos
-
- Resolva a seguinte equação:
por andersontricordiano » Sex Mar 28, 2014 23:38
- 1 Respostas
- 1903 Exibições
- Última mensagem por young_jedi

Sáb Mar 29, 2014 16:43
Análise Combinatória
Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.