• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda Inequação

Ajuda Inequação

Mensagempor James_Junior » Sex Mai 23, 2014 18:06

Pessoal , estava fazendo uma lista de exercícios e me deparei com isto:
x=\sqrt x > x
não sei por onde começar , me expliquem passos a passo por favor
James_Junior
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Mai 23, 2014 17:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Química
Andamento: cursando

Re: Ajuda Inequação

Mensagempor e8group » Sáb Mai 24, 2014 18:32

Se você afirma que x= \sqrt{x} (x=0,1 ,claro!) . Como pode

x > x ???
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Ajuda Inequação

Mensagempor James_Junior » Dom Mai 25, 2014 20:03

santhiago escreveu:Se você afirma que x= \sqrt{x} (x=0,1 ,claro!) . Como pode

x > x ???

Eu digitei errado e.e , mas ae vai a pergunta , Se o número real x satisfaz \sqrt x > x , então podemos afirmar que :
James_Junior
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Mai 23, 2014 17:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Química
Andamento: cursando

Re: Ajuda Inequação

Mensagempor e8group » Dom Mai 25, 2014 21:11

Então podemos afirmar que x pertence a (0,1) .

Consequência da seguinte proposição :

Proposição : Dados a,b reais quaisquer , se a,b \geq 0 , então dizer que a \geq b é o suficiente dizer que a^2 \geq b^2 .

De fato , se a \geq b então a -b \geq 0 . De a+b \geq 0(pois a,b > 0 por hipótese) , resulta (a+b)(a-b) \geq 0 e com isso a^2- b^2 \geq 0 , i.e , a^2 \geq b^2 .

Reciprocamente , se a^2 \geq b^2 então a^2-b^2 = (a-b)(a+b) \geq 0 e novamente de a+b \geq 0 (pois a,b > 0 por hipótese) resulta a > b .

Assim , o conjunto solução da desigualdade \sqrt{x} > x é o mesmo que o da x > x^2 bem como da inequação x -x^2 > 0 . Tente avançar .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Inequações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59