• Anúncio Global
    Respostas
    Exibições
    Última mensagem

INEQUAÇÕES-QUOCIENTE

INEQUAÇÕES-QUOCIENTE

Mensagempor Lenin » Qui Mai 30, 2013 21:17

Pessoal, não lembro como resolver essas inequações do tipo:

1. \frac{1}{X-4} < \frac{2}{X+3}



2. \frac{x+1}{X+2} < \frac{3+3}{X+4}

sei que é algo besta, mas não lembro como fazer...alguém poderia me ajudar?
Lenin
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qua Abr 10, 2013 23:08
Formação Escolar: ENSINO MÉDIO
Área/Curso: Cursinho
Andamento: cursando

Re: INEQUAÇÕES-QUOCIENTE

Mensagempor Rafael16 » Qui Mai 30, 2013 22:31

Olá Lenin!

\frac{1}{x-4} < \frac{2}{x+3}

\frac{1}{x-4} - \frac{2}{x+3}< 0

Aqui tem que tirar o mmc de expressões algébricas, caso não saiba, da uma pesquisada.

\frac{(x+3)-2(x-4)}{(x-4)(x+3)} < 0

\frac{-x+11}{x^2-x-12} < 0

Chegamos em uma inequação quociente.

Vamos chamar o numerador de f(x) e denominador de g(x). Depois achar as raízes de cada função e fazer o estudo de sinais, que é o que faremos agora:

f(x)=-x + 11 \Rightarrow 0 = -x + 11 \Rightarrow x=11
f(x) é uma função decrescente, ou seja, para valores de x acima de 11, a função vai ser negativa, e para valores de x abaixo de 11, positiva.

Vamos agora achar a raiz da função g(x) e fazer o estudo de sinais:
g(x)=x^2 - x - 12  \Rightarrow 0 = x^2 - x - 12  \Rightarrow x' = -3 e x''=4 são as raízes.
g(x) é uma função com concavidade para cima, então para valores de x menor que -3, a função é positiva. Para valores de x maior que 4, a função também é positiva. E para valores de x entre -3 e 4, a função é negativa.

Depois é só fazer o jogo de sinais.
JogoDeSinais.png
JogoDeSinais.png (3.28 KiB) Exibido 5602 vezes

Essa é a solução
Qualquer dúvida comenta ai.
E tente fazer a 2.
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: INEQUAÇÕES-QUOCIENTE

Mensagempor Lenin » Qui Mai 30, 2013 23:05

Rafael16 escreveu:Olá Lenin!

\frac{1}{x-4} < \frac{2}{x+3}

\frac{1}{x-4} - \frac{2}{x+3}< 0

Aqui tem que tirar o mmc de expressões algébricas, caso não saiba, da uma pesquisada.

\frac{(x+3)-2(x-4)}{(x-4)(x+3)} < 0

\frac{-x+11}{x^2-x-12} < 0

Chegamos em uma inequação quociente.

Vamos chamar o numerador de f(x) e denominador de g(x). Depois achar as raízes de cada função e fazer o estudo de sinais, que é o que faremos agora:

f(x)=-x + 11 \Rightarrow 0 = -x + 11 \Rightarrow x=11
f(x) é uma função decrescente, ou seja, para valores de x acima de 11, a função vai ser negativa, e para valores de x abaixo de 11, positiva.

Vamos agora achar a raiz da função g(x) e fazer o estudo de sinais:
g(x)=x^2 - x - 12  \Rightarrow 0 = x^2 - x - 12  \Rightarrow x' = -3 e x''=4 são as raízes.
g(x) é uma função com concavidade para cima, então para valores de x menor que -3, a função é positiva. Para valores de x maior que 4, a função também é positiva. E para valores de x entre -3 e 4, a função é negativa.

Depois é só fazer o jogo de sinais.
JogoDeSinais.png

Essa é a solução
Qualquer dúvida comenta ai.
E tente fazer a 2.


Ah sim..vlw..outra dúvida..se aqui nessa expressão \frac{(x+3)-2(x-4)}{(x-4)(x+3)} < 0 eu pegar o (x-4)(x+3) e fazer por inequações-produto que no caso ficaria x<4 e x<-3 ao invés de ir para uma equação do segundo grau e calcular delta, poderia tbm né? ou não daria o mesmo resultado em todas? Abraços.
Lenin
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qua Abr 10, 2013 23:08
Formação Escolar: ENSINO MÉDIO
Área/Curso: Cursinho
Andamento: cursando

Re: INEQUAÇÕES-QUOCIENTE

Mensagempor Rafael16 » Qui Mai 30, 2013 23:27

Lenin escreveu:Ah sim..vlw..outra dúvida..se aqui nessa expressão \frac{(x+3)-2(x-4)}{(x-4)(x+3)} < 0 eu pegar o (x-4)(x+3) e fazer por inequações-produto que no caso ficaria x<4 e x<-3 ao invés de ir para uma equação do segundo grau e calcular delta, poderia tbm né? ou não daria o mesmo resultado em todas? Abraços.


Sim, chegaríamos no mesmo lugar. Veja:

g(x)=x-4 \Rightarrow 0 = x - 4 \Rightarrow x = 4
h(x) = x + 3 \Rightarrow 0=x+3 \Rightarrow x=-3

Jogando na reta para fazer o jogo de sinais, fica:
JogoDeSinais2.png
JogoDeSinais2.png (2.8 KiB) Exibido 5597 vezes


Depois temos que fazer o jogo de sinais dessa reta com a reta do numerador.
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: INEQUAÇÕES-QUOCIENTE

Mensagempor Lenin » Sáb Jun 01, 2013 01:00

Rafael16 escreveu:
Lenin escreveu:Ah sim..vlw..outra dúvida..se aqui nessa expressão \frac{(x+3)-2(x-4)}{(x-4)(x+3)} < 0 eu pegar o (x-4)(x+3) e fazer por inequações-produto que no caso ficaria x<4 e x<-3 ao invés de ir para uma equação do segundo grau e calcular delta, poderia tbm né? ou não daria o mesmo resultado em todas? Abraços.


Sim, chegaríamos no mesmo lugar. Veja:

g(x)=x-4 \Rightarrow 0 = x - 4 \Rightarrow x = 4
h(x) = x + 3 \Rightarrow 0=x+3 \Rightarrow x=-3

Jogando na reta para fazer o jogo de sinais, fica:
JogoDeSinais2.png


Depois temos que fazer o jogo de sinais dessa reta com a reta do numerador.


vlw brother..abração
Lenin
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qua Abr 10, 2013 23:08
Formação Escolar: ENSINO MÉDIO
Área/Curso: Cursinho
Andamento: cursando


Voltar para Inequações

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.