• Anúncio Global
    Respostas
    Exibições
    Última mensagem

{equação exponencial}

{equação exponencial}

Mensagempor Danilo » Sex Ago 17, 2012 16:02

Calcule o produto das soluções da equação

{4}^{{x}^{2} + 2}- 3 \cdot {2}^{{x}^{2} + 3} = 160

tentei resolver assim:

{2}^{{2x}^{2} + 4} - 3 \cdot {2}^{{x}^{2} + 3} = 160

{2}^{x} = y

{16y}^{4} - 24{y}^{2} - 160 = 0

{y}^{2} = z

{16z}^{2} - 24{z} - 160 = 0 \Rightarrow z = 4 \Rightarrow y = 2 \Rightarrow x = 1.

O produto das soluções segundo o livro é -2. Não sei como encontrar duas soluções...
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: {equação exponencial}

Mensagempor e8group » Sex Ago 17, 2012 16:19

Coloque o " 2^{x^2} " em evidência só isso basta
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: {equação exponencial}

Mensagempor e8group » Sex Ago 17, 2012 16:22

Ou melhor , faça 2^{x^2} = y .Assim basta resolver equação quadrática .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: {equação exponencial}

Mensagempor Russman » Sex Ago 17, 2012 16:24

Novamente você esta cometendo o mesmo erro! PRESTE ATENÇÃO no que você esta substituindo.

Note que 2^{x^2} não é (2^x)^2 e sim (2^x)^x. Portanto a substituição correta é y=2^{x^2}.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: {equação exponencial}

Mensagempor Danilo » Sex Ago 17, 2012 16:28

Russman escreveu:Novamente você esta cometendo o mesmo erro! PRESTE ATENÇÃO no que você esta substituindo.

Note que 2^{x^2} não é (2^x)^2 e sim (2^x)^x. Portanto a substituição correta é y=2^{x^2}.


:y:
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}