• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exerc.proposto

exerc.proposto

Mensagempor adauto martins » Seg Set 23, 2019 14:37

(eear-escola de especialistas da aeronautica-exame de admissao 1942)
calcular h na equaçao (h+3).{x}^{2}-(2h-1).x+ h+10=0 de modo que a soma dos inversos das raizes seja 1/3.
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 999
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.proposto

Mensagempor DanielFerreira » Dom Jan 26, 2020 15:15

adauto martins escreveu:(eear-escola de especialistas da aeronautica-exame de admissao 1942)
calcular h na equaçao (h+3).{x}^{2}-(2h-1).x+ h+10=0 de modo que a soma dos inversos das raizes seja 1/3.


Sejam \mathsf{x_1} e \mathsf{x_2} as raízes da equação.

De acordo com o enunciado, \mathsf{\frac{1}{x_1} + \frac{1}{x_2} = \frac{1}{3}}.

Desenvolvendo,

\\ \mathsf{\frac{1}{x_1} + \frac{1}{x_2} = \frac{1}{3}} \\\\ \mathsf{\frac{x_1 + x_2}{x_1 \cdot x_2} = \frac{1}{3}} \\\\ \mathsf{3 \cdot (x_1 + x_2) = x_1 \cdot x_2} \\\\ \mathsf{3 \cdot \frac{(2h - 1)}{(h + 3)} = \frac{(h + 10)}{(h + 3)}} \\\\ \mathsf{3(2h - 1) = h + 10} \\\\ \mathsf{6h - 3 = h + 10} \\\\ \boxed{\mathsf{h = \frac{13}{5}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1704
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?