• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exerc.proposto

exerc.proposto

Mensagempor adauto martins » Seg Set 23, 2019 14:37

(eear-escola de especialistas da aeronautica-exame de admissao 1942)
calcular h na equaçao (h+3).{x}^{2}-(2h-1).x+ h+10=0 de modo que a soma dos inversos das raizes seja 1/3.
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1007
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.proposto

Mensagempor DanielFerreira » Dom Jan 26, 2020 15:15

adauto martins escreveu:(eear-escola de especialistas da aeronautica-exame de admissao 1942)
calcular h na equaçao (h+3).{x}^{2}-(2h-1).x+ h+10=0 de modo que a soma dos inversos das raizes seja 1/3.


Sejam \mathsf{x_1} e \mathsf{x_2} as raízes da equação.

De acordo com o enunciado, \mathsf{\frac{1}{x_1} + \frac{1}{x_2} = \frac{1}{3}}.

Desenvolvendo,

\\ \mathsf{\frac{1}{x_1} + \frac{1}{x_2} = \frac{1}{3}} \\\\ \mathsf{\frac{x_1 + x_2}{x_1 \cdot x_2} = \frac{1}{3}} \\\\ \mathsf{3 \cdot (x_1 + x_2) = x_1 \cdot x_2} \\\\ \mathsf{3 \cdot \frac{(2h - 1)}{(h + 3)} = \frac{(h + 10)}{(h + 3)}} \\\\ \mathsf{3(2h - 1) = h + 10} \\\\ \mathsf{6h - 3 = h + 10} \\\\ \boxed{\mathsf{h = \frac{13}{5}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1704
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}