• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exerc.proposto

exerc.proposto

Mensagempor adauto martins » Seg Set 16, 2019 16:02

(este-ita-escola tecnica do exercito,instituto tecnologico de aeronautica-concurso de admissao 1948)
resolva o sistema
{x}^{y} &= {y}^{x} \\
 
   {x}^{p} &= {y}^{q}
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 979
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.proposto

Mensagempor adauto martins » Qui Set 19, 2019 09:39

soluçao:
da equaçao,{x}^{p}={y}^{q},teremos:
x={y}^{q/p},voltemos a prim.equaçao:
{x}^{y}={y}^{x}\Rightarrow {{y}^{(q/p)}}^{y}={y}^{x}...
tomaremos
y\succ 1 \Rightarrow log({y}^{(q.y/p)})=log({y}^{x}) \Rightarrow
x=(q.y/p)
voltemos a seg. equaçao:
{y}^{q}={x}^{p}\Rightarrow {y}^{q}=(y.p/q)^p \Rightarrow
usando o algebrismo,e isolando o y,teremos:


y=({q/p})^{(p/(p-q))}...
analogomnente p/x...
x={(q/p)}^{(q/(q-p))}
para x,y positivos e maiores que 1...
tambem podemos ter p/x,y tais que ,x=y=1(resolva-o)...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 979
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.


cron