• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação

Equação

Mensagempor PernaLonga123 » Dom Abr 08, 2018 16:32

Seja f: R - {3} = R dada por f(x) = 5x + 1 / x - 3 determine o valor de k

De modo que sua inversa seja dada por f -¹ (x) = 3y + 1 / y - k

Se puderem deixar a resolução para eu aprender agradeço
PernaLonga123
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Abr 08, 2018 16:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Nenhum
Andamento: cursando

Re: Equação

Mensagempor Gebe » Dom Abr 08, 2018 17:24

Ok, primeiro uma observação, talvez tu tenhas escrito errado ou teu professor a expressão da função inversa. Perceba que f^{-1}(x) é dada em função de "x", porem a expressão dada em função de "y". Dito isso considere que f^{-1}(x) é dado na verdade por: \frac{3x+1}{x-k}

Outra observação rapida pra que não haja problemas em eventuais futuros posts aqui no site, utilize parentesis se na descrição da função. Ex.: f(x)=(5x+1)/(x-3). Do jeito que está escrito parece estar: 5x+\frac{1}{x}-3. Pode também (que é ainda melhor) utilizar o latex clicando no botão "Editor de Formulas" que fica acima da caixa de texto.

Resolução:
\\
f(x)=y\\
\\
y=\frac{5x+1}{x-3}\\
\\
Trocar\;x\;por\;y\\
\\
x=\frac{5y+1}{y-3}\\
\\
Isolar\;y\\
\\
x*(y-3)=5y+1\\
\\
xy-3x=5y+1\\
\\
xy-5y=3x+1\\
\\
y(x-5)=3x+1\\
\\
y=\frac{3x+1}{x-5}\\
\\
ou\\
\\
f^{-1}(x)=\frac{3x+1}{x-5}\\

Comparando a inversa achada com a dada, temos que:
\\
x-k=x-5\\
\\
-k=-5\\
\\
k=5\;\;(resposta)

Espero ter ajudado, qualquer duvida deixe uma msg. Bons estudos.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.