• Anúncio Global
    Respostas
    Exibições
    Última mensagem

fraçoes

fraçoes

Mensagempor gabrielpacito » Ter Fev 27, 2018 23:29

Dividir um número por 0,0125 equivale a multiplicá-lo por:
a) 1/125.
b) 1/8.
c) 8.
d) 12,5.
e) 80.
gabrielpacito
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Fev 07, 2018 15:29
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: fraçoes

Mensagempor nakagumahissao » Qua Fev 28, 2018 00:56

Veja bem, 0,0125 equivale a dizer que:

0,0125 = \frac{125}{10000}

Simplificando esta fração, dividindo tanto o numerador como o denominador pelos mesmos valores, teremos:

1. Divindo-se por 125 (tanto o numerador quanto o denominador):

0,0125 = \frac{125}{10000} = \frac{1}{80}

Considere agora um numero qualquer 'x'. Como a questão sugere, dividir este número x pelo resultado acima, teremos:

\frac{x}{\frac{1}{80}} = \frac{80}{1} \cdot \frac{x}{1} = 80x

Ou seja, multiplicamos por 80. A resposta é a letra e.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 385
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.