• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação - Como resolver problema com equação

Equação - Como resolver problema com equação

Mensagempor macedo1967 » Seg Set 25, 2017 10:13

Uma loja organizou 512 pacotes de papel sulfite em pilhas, todas com o mesmo número de pacotes,
de modo que o número de pacotes de uma pilha fosse o dobro do número de pilhas.
O número de pacotes de uma pilha é:

(A) 24.
(B) 26.
(C) 28.
(D) 30.
(E) 32.
macedo1967
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Qui Set 14, 2017 12:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Admnistração
Andamento: cursando

Re: Equação - Como resolver problema com equação

Mensagempor DanielFerreira » Qui Set 28, 2017 23:59

macedo1967 escreveu:Uma loja organizou 512 pacotes de papel sulfite em pilhas, todas com o mesmo número de pacotes,
de modo que o número de pacotes de uma pilha fosse o dobro do número de pilhas.
O número de pacotes de uma pilha é:

(A) 24.
(B) 26.
(C) 28.
(D) 30.
(E) 32.


Olá Macedo!

Considerando "a" o número de pacotes em cada pilha e "b" a quantidade de pilhas, teremos: \boxed{\mathsf{a = 2b}} e \boxed{\mathsf{a \cdot b = 512}}.

Resolvendo o sistema formado pelas duas equações determinamos a resposta.

Espero ter ajudado, qualquer dúvida comente!

Att,

Daniel Ferreira.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1681
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Equação - Como resolver problema com equação

Mensagempor macedo1967 » Sex Set 29, 2017 11:26

Mais uma vez Muito Obrigado Daniel!


Me ajudou muito!
macedo1967
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Qui Set 14, 2017 12:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Admnistração
Andamento: cursando

Re: Equação - Como resolver problema com equação

Mensagempor DanielFerreira » Dom Out 08, 2017 20:10

Não há de quê, meu caro!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1681
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59