• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação

Equação

Mensagempor macedo1967 » Qua Set 20, 2017 17:22

Determinada quantidade de suco será servida em copos.
Se forem colocados 300 mL em cada copo, serão servidos n copos, e todo o suco será servido;
mas se forem colocados 250 mL em cada copo, será possível servir 4 copos a mais e todo o suco também será servido.
A quantidade de suco, em litros, a ser servida é

(A) 6,5.
(B) 6,0.
(C) 5,5.
(D) 5,0.
(E) 4,5.
macedo1967
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Qui Set 14, 2017 12:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Admnistração
Andamento: cursando

Re: Equação

Mensagempor DanielFerreira » Sex Set 22, 2017 19:50

Olá Macedo, seja bem-vindo!

macedo1967 escreveu:Determinada quantidade de suco será servida em copos.
Se forem colocados 300 mL em cada copo, serão servidos n copos, e todo o suco será servido;
mas se forem colocados 250 mL em cada copo, será possível servir 4 copos a mais e todo o suco também será servido.
A quantidade de suco, em litros, a ser servida é

(A) 6,5.
(B) 6,0.
(C) 5,5.
(D) 5,0.
(E) 4,5.


Seja \underline{\mathsf{n}} a quantidade de copos e \underline{\mathsf{x}} a quantidade total de suco (em ml). Assim, temos:

Condição I:

macedo1967 escreveu:Se forem colocados 300 mL em cada copo, serão servidos n copos, e todo o suco será servido;...


\boxed{\mathbf{300 \cdot n = x}}


Condição II:

macedo1967 escreveu:...mas se forem colocados 250 mL em cada copo, será possível servir 4 copos a mais e todo o suco também será servido.


\boxed{\mathbf{250 \cdot n + 250 \cdot 4 = x}}


Para concluir o exercício basta você resolver o sistema formado pelas duas equações acima. Ou seja, determine o valor de "x".

Feito isto, deve encontrar \mathsf{x = 6.000 \, ml}. Que, na verdade, corresponde à SEIS litros.

Espero ter ajudado!

Qualquer dúvida, comente!

Att,

Daniel Ferreira.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1665
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Equação

Mensagempor macedo1967 » Sáb Set 23, 2017 12:28

Muito Obrigado Daniel,


Me ajudou muito sim!

Valeu!
macedo1967
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Qui Set 14, 2017 12:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Admnistração
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}