• Anúncio Global
    Respostas
    Exibições
    Última mensagem

kumon

kumon

Mensagempor zenildo » Qui Dez 29, 2016 21:10

Esse problema tentei resolver mas não consegui. É da minha irmã. Alguém?
Anexos
Problema de Kumon.jpg
zenildo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 308
Registrado em: Sáb Abr 06, 2013 20:12
Localização: SALVADOR-BA, TERRA DO AXÉ! BAÊA!!!!!
Formação Escolar: EJA
Área/Curso: PRETENDO/ DIREITO
Andamento: cursando

Re: kumon

Mensagempor adauto martins » Seg Jan 02, 2017 15:22

A(x)=\int_{(x,0)}^{(x,y)}({y}_{r}-{x}^{3})dx...,onde {y}_{r} é a equaçao da reta a ser determinda e (0,x),(x,y) serao os pontos de intersecçao da reta com o eixo x,e interseçao da reta com a curva {y}_{r}={x}^{3},q. sera o intervalo de integraçao...determine-os...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 667
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: kumon

Mensagempor adauto martins » Qui Jan 05, 2017 11:05

vamos a soluçao desse problema:
a equaçao da reta tangente:
{y}_{r}-{y}_{0}=f'({x}_{0})(x-{x}_{0})...,como foi dado o ponto (0,2) \Rightarrow {y}_{0}=2...
o ponto (\sqrt[3]{2},2)\in {y}_{r},{x}^{3},logo a equaçao da reta tangente sera:
{y}_{r}-2=f'(\sqrt[3]{2})(x-\sqrt[3]{2})...os pontos onde {y}_{r}={x}^{3},serao os limites de integraçao da integraçao em questao:
3.(\sqrt[3]{2})^{2}).(x-\sqrt[3]{2})+2={x}^{3}\Rightarrow {x}^{3}-3.(\sqrt[3]{2})^{2}(x-\sqrt[3]{2})-2=0\Rightarrow 


{x}^{3}-3.(\sqrt[3]{2})^{2})x+(3.\sqrt[3]{2}-2)=0,ai agora é resolver essa equaçao de terceiro grau...
bom pra resolver isso pode-se usar a reduçao de polinomios,caso tenha raizes complexas havera somente uma raiz real,caso esse q. nao resolve o problema pois precisa de duas raizes reais q. serao os limites da integral,ou entao usar a formula do calculo de raizes da eq. de terceiro grau...ai meu caro é com vcs,maos a obra...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 667
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Equações

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?