• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Potência com incógnita no expoente

Potência com incógnita no expoente

Mensagempor Rayane01 » Qua Dez 21, 2016 19:12

Considerando que 2^x+2^{(-x)}=7 qual o valor de x e de y na equação: 4^x+4^{(-x)}=y
Já vi algumas questões parecidas mas nenhuma explica detalhadamente a resolução. Se puderem colocar o passo a passo seria de grande ajuda. Desde já, agradeço.
Rayane01
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Dez 21, 2016 18:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Potência com incógnita no expoente

Mensagempor petras » Qui Dez 22, 2016 22:44

{2}^{x}+{2}^{-x}=7

({{2}^{x}+{2}^{-x}})^{2}={7}^{2}

{{2}^{2x}+2+{2}^{-2x}}=49

{{2}^{2x}+{2}^{-2x}}=47

mas y = {{4}^{x}+{4}^{-x}} = {2}^{2x}+{{2}^{-2x}=47
petras
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 52
Registrado em: Sex Jan 22, 2016 21:19
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.