• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[funções log ln exponenciais] com respostas insolúveis

[funções log ln exponenciais] com respostas insolúveis

Mensagempor da Silva » Qua Nov 30, 2016 18:24

Olá, boa noite, minha primeira vez aqui.
Esses exercícios em anexo do Medeiros da Silva ( Matemática: para os cursos de Economia...), há respostas no pé da página, mas, não consegui chegar nelas. Até aí eu estava indo muito bem, será que alguém aí conseguiria desenvolvê-las pra mim?
Desde já, obrigado.
Anexos
IMG-20161130-WA0004.jpeg
exercícios Medeiros Mat1
da Silva
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Nov 30, 2016 17:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Re: [funções exponenciais e logarítmas] com respostas insolú

Mensagempor da Silva » Dom Dez 18, 2016 17:45

Segue abaixo a página mais legível, escaneada.

exercícios medeiros mat 1 scaner.jpg
Exercícios do Medeiros mat 1 com respostas mas sem solução
da Silva
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Nov 30, 2016 17:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Re: [funções log ln exponenciais] com respostas insolúveis

Mensagempor petras » Dom Dez 18, 2016 23:39

Favor ler e respeitar as regras do fórum:

Regras do fórum:

Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!
Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios, trabalhos, provas etc.
Caso você não tenha tentado algo pois ainda não sabe como iniciar o exercício, então informe essa dificuldade.
Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo;


Para não haver má interpretação em suas postagens, especialmente na precedência das operações, sempre utilize LaTeX para inserir as notações adequadas, podendo ser a partir do botão "editor de fórmulas";


Digite todo o enunciado do exercício! (além de suas tentativas e dificuldades).
O enunciado do exercício não deve ser anexado como um arquivo de imagem. Use arquivos de imagens apenas para enviar alguma figura ou ilustração que esteja presente no enunciado (ou na sua resolução) do exercício;


Não toleramos o uso do fórum para spam, pornografia, brigas entre usuários, postagem de propagandas etc;


Postar apenas um exercício ou dúvida por tópico;


Tópicos repetidos serão removidos. Por isso, antes de postar um novo tópico, faça uma busca no fórum.
petras
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sex Jan 22, 2016 21:19
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?