• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação do 2º grau.

Equação do 2º grau.

Mensagempor Ygor Sampaio » Seg Jul 04, 2016 12:03

Sejam x1 e x2 números inteiros, raízes da equação {x}^{2}+14x+c=0 . Se x1\leq0 e x2\leq0 então o número de possíveis
valores de c é igual a

a)10
b)9
c)8
d)7
e)6

Pra mim seriam infinitos números.
Ygor Sampaio
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Jul 04, 2016 11:39
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Equação do 2º grau.

Mensagempor DanielFerreira » Sáb Jul 09, 2016 14:05

Ygor Sampaio escreveu:Sejam x1 e x2 números inteiros, raízes da equação {x}^{2}+14x+c=0 . Se x1\leq0 e x2\leq0 então o número de possíveis
valores de c é igual a

a)10
b)9
c)8
d)7
e)6

Pra mim seriam infinitos números.


Esboçando o gráfico com a parábola para cima e sabendo que as raízes são não-positivas, podemos tirar que c \geq 0; inclusive, que Y_v \leq 0. Desse modo, temos que:

\\ Y_v \leq 0 \\\\ - \frac{\Delta}{4a} \leq 0 \\\\ - \Delta \leq 0 \\\\ \Delta \geq 0 \\\\ b^2 - 4ac \geq 0 \\\\ 196 - 4c \geq 0 \\\\ c \leq 49

Até aqui concluímos que \boxed{0 \leq c \leq 49}!!

Por conseguinte, sabemos que o valor do discriminante deve ser maior ou igual a zero uma vez que as raízes são inteiras, ou seja, elas existem. Vale salientar também que o fato de as raízes serem inteiras o valor do delta deve ser um quadrado perfeito.

Assim, \Delta = 196 - 4c = \text{quadrado perfeito}.

Por fim, igualamos (196 - 4c) aos quadrados perfeitos menores que 196 e verificamos se c \in \mathbb{Z}.

Comente qualquer dúvida!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1728
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}