• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação

Equação

Mensagempor Mateus Sousa » Qui Mai 21, 2015 23:58

Estou iniciando meu curso de matemática agora, mas tô com dificuldade numa parte...

Preciso que essa equação se transforme em outra equação de 2º grau. Se alguém puder fazer passo a passo pra mim e explicar o que fez, agradeceria muito!
Anexos
eq '.jpg
Equação
Mateus Sousa
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Mai 21, 2015 23:24
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Equação

Mensagempor nakagumahissao » Ter Out 06, 2015 10:29

Basta que você desenvolva a equação, só isso!


(x - 4)\left(\frac{\frac{1200}{x} + 10}{12} \right) = 100

Tirando o MMC de x e 1 e fazendo as contas teremos:

(x - 4)\left(\frac{\frac{1200 + 10x}{x}}{12} \right) = 100

(x - 4)\left(\frac{1200 + 10x}{12x} \right) = 100

Fazendo agora a multiplicação daquilo que se encontra em parênteses com o outro, tem-se que:

\frac{1200x + 10x^{2} - 4800 - 40x}{12x} = 100

1200x + 10x^{2} - 4800 - 40x = 1200x

1200x + 10x^{2} - 4800 - 40x - 1200x = 0

10x^{2} - 40x - 4800 = 0

Dividindo-se toda a equação por 10, tem-se:

x^{2} - 4x - 480 = 0

a = 1, b = -4 e c = -480.

Resolvendo agora esta equação e determinando o valor de x, teremos:

\Delta = b^2 - 4ac = (-4)^2 - 4 \times 1 \times (-480) = 1936

\sqrt{\Delta} = 44

Usando Bháskara (abaixo), tem-se:

x = \frac{-b \pm \sqrt{\Delta}}{2a}

x = \frac{-(-4) \pm 44}{2(1)} = \frac{4 \pm 44}{2}

x = \frac{4 + 44}{2} = \frac{48}{2} \Rightarrow x = 24

e

x = \frac{4 - 44}{2} = -\frac{40}{2} \Rightarrow x = -20
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: