• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fatoracao Algébrica

Fatoracao Algébrica

Mensagempor Marcones » Sáb Mar 21, 2015 11:37

Estou estudando a dias esse assunto de fatoração e só consegui resolver da questão 39 à 42
Semana inteira tentando, tentando, tentando, mas não estou conseguindo.
Imagem
Marcones
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Mar 21, 2015 11:10
Formação Escolar: EJA
Andamento: formado

Re: Fatoracao Algébrica

Mensagempor Cleyson007 » Sáb Mar 21, 2015 12:13

Bom dia Marcones!

Seja muito bem-vindo ao fórum.

Vamos primeiro ao exercício 45. Pode ser?

45) x² - 4a² + 6x + 12a

Essa parte que deixei sublinhada para você é uma diferença de dois quadrados. Vamos resolvê-la por primeiro: (x - 2a)(x + 2a)

A outra parte pode ser resolvida por fator comum em evidência: 6(x + 2a)

Olha como está ficando: (x - 2a)(x + 2a) + 6(x + 2a)

Agora vamos fazer um agrupamento! Repare que o (x + 2a) aparece em ambos os lados. Logo,

(x + 2a) (x - 2a + 6)

Tente resolver algum outro exercício seguindo esses passos.

Qualquer dúvida estou a disposição :y:

Abraço
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1213
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Fatoracao Algébrica

Mensagempor Marcones » Sáb Mar 21, 2015 14:16

Muito bem explicado! Esse eu já havia resolvido.
Marcones
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Mar 21, 2015 11:10
Formação Escolar: EJA
Andamento: formado

Re: Fatoracao Algébrica

Mensagempor Marcones » Sáb Mar 21, 2015 16:31

Me vê a 43, pode ser?
Marcones
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Mar 21, 2015 11:10
Formação Escolar: EJA
Andamento: formado

Re: Fatoracao Algébrica

Mensagempor Cleyson007 » Sáb Mar 21, 2015 18:13

:y: Lógico que sim!

Sabemos que {a}^{0}=1. Logo temos, {a}^{12}-{a}^{6}-20{a}^{0}.

Colocando o {a}^{6} como fator comum em evidência, temos:

{a}^{6}\left({a}^{6}-1-\frac{20}{a^6} \right)

Recebeu a mensagem privada que lhe enviei?

Abraço
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1213
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Fatoracao Algébrica

Mensagempor Marcones » Sáb Mar 21, 2015 23:41

Recebi sim!!
Marcones
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Mar 21, 2015 11:10
Formação Escolar: EJA
Andamento: formado

Re: Fatoracao Algébrica

Mensagempor Marcones » Dom Mar 22, 2015 14:47

Eu gostaria de saber como faço pra chegar nesses respectivos resultados. Já tentei de tudo quando é modo que encontrei. São casos especiais? Por que?

Fatoração



Imagem
Imagem
Marcones
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Mar 21, 2015 11:10
Formação Escolar: EJA
Andamento: formado

Re: Fatoracao Algébrica

Mensagempor Cleyson007 » Sex Mar 27, 2015 11:42

Olá, bom dia!

Desculpe a demora meu amigo..

É um caso especial sim! Estamos trabalhando com o produto e a soma!

É algo bem assim (para o exercício 43):

Temos que ter dois números que ao serem multiplicados resulte em -20. E, dois números que ao serem somados resulte em -1.

Basta montar um sistema de equações para os números em questão (a saber, x e y).

(x)(y) = -20
x + y = -1

Resolvendo o sistema acima encontramos -5 e 4.

Tem interesse na mensagem privada que lhe enviei?

Abraço e bons estudos :y:
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1213
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59