• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação Exponencial

Equação Exponencial

Mensagempor matheus36000 » Dom Dez 21, 2014 16:32

Bem pessoal , estou aqui para pedir a ajuda de vocês que talvez possam me ajudar a resolver esse exercício :P
>>Essa é a equção :
\sqrt[3]{{8}^{x}}=1
>>Cheguei até aqui:
\sqrt[3]{{}^{2x}}=1
{2}^\frac{3x}{3}=1
{2}^{x}=1

Espero que possam me ajudar a sair disso (sabendo q a resposta do ex é :0) por favor uma explicação dedidatica :-P
matheus36000
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Dez 21, 2014 16:17
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Ensino Médio
Andamento: cursando

Re: Equação Exponencial

Mensagempor Russman » Dom Dez 21, 2014 19:11

Está correto. De fato, x^0 = 1 para todo x Real.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Equação Exponencial

Mensagempor matheus36000 » Dom Dez 21, 2014 20:53

Russman escreveu:Está correto. De fato, x^0 = 1 para todo x Real.


Muito obrigado cara!! mais eu não entendo isso ... Poderia me recomendar uma citação de algum material didático explicando essa propriedade ? Obrigado :y:
matheus36000
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Dez 21, 2014 16:17
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Ensino Médio
Andamento: cursando

Re: Equação Exponencial

Mensagempor Russman » Dom Dez 21, 2014 21:14

Comumente, a notação x^n quer significar o processo de multiplicação sucessiva de um número por si mesmo. Entende-se que o número x deve ser multiplicado por si mesmo um número n de vezes.O número n é chamado de expoente. Aqui considerando apenas o caso de expoente natural.

Daí, podemos operar este número. É verdade que

x^n . x^m = x^{n+m}

Por exemplo, 2^3 . 2^4 = (2.2.2) . (2.2.2.2) = 2.2.2.2.2.2.2 = 2^7.

e também

\frac{x^n}{x^m} = x^{n-m}.

De acordo com essa notação se você considerar n=m então teremos o caso

\frac{x^n}{x^m} = x^{n-n}= x^0.

Porém, se n=m então x^n = x^m e seu quociente deve ser 1.

Este é o motivo. Apenas se quer sentido coerente à notação.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Equação Exponencial

Mensagempor matheus36000 » Dom Dez 21, 2014 21:55

Russman escreveu:Comumente, a notação x^n quer significar o processo de multiplicação sucessiva de um número por si mesmo. Entende-se que o número x deve ser multiplicado por si mesmo um número n de vezes.O número n é chamado de expoente. Aqui considerando apenas o caso de expoente natural.

Daí, podemos operar este número. É verdade que

x^n . x^m = x^{n+m}

Por exemplo, 2^3 . 2^4 = (2.2.2) . (2.2.2.2) = 2.2.2.2.2.2.2 = 2^7.

e também

\frac{x^n}{x^m} = x^{n-m}.

De acordo com essa notação se você considerar n=m então teremos o caso

\frac{x^n}{x^m} = x^{n-n}= x^0.

Porém, se n=m então x^n = x^m e seu quociente deve ser 1.

Este é o motivo. Apenas se quer sentido coerente à notação.


Muito Obrigado Perfeito ....
Fui eu que "marquei"
Levando em conta : {2}^{x}=1
Logo :{2}^{x}={2}^{0}
Então :X=0
matheus36000
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Dez 21, 2014 16:17
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Ensino Médio
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.