• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação exponencial ]

[Equação exponencial ]

Mensagempor Thais Camerino » Dom Mai 25, 2014 20:51

Olá!
Queria pedir ajuda para o raciocínio deste tipo d equação.
Eu já vi que neste caso tem q se colocar o 3^x^-1 em evidencia.. mas não percebo, e este tipo de questão já vi varias vezes mas não sei pq é feito desta maneira..

3^x-1-3^x+3^x+1+3^x+2 = 3063^x^-^1-3^x+3^x^+^1+3^x^+^2 = 306

3^x^-^1(1-3+3^2+3^3) = 306 (Porque tem aquele 1 dentro dos parênteses? como ficou assim?)


3^x^-^1.34 = 306 (Porque 34? )


Se alguêm pudesse explicar-me, ficaria grata! (:
Thais Camerino
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Dom Abr 27, 2014 00:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Design
Andamento: cursando

Re: [Equação exponencial ]

Mensagempor e8group » Dom Mai 25, 2014 21:34

Você quer dizer 3^{x-1} -3^x+ 3^{x+1} +3^{x+2} = 306 ? Se sim , note que podemos multiplicar a eq. por 1, vejamos que 1=3^0 =  3^{x-1} \cdot 3^{-(x -1)}} e

3^{x-1} -3^x+ 3^{x+1} +3^{x+2} = 1 \cdot (3^{x-1} -3^x+ 3^{x+1} +3^{x+2}) =  3^{x-1}  \cdot 3^{-(x -1)}} ((3^{x-1} -3^x+ 3^{x+1} +3^{x+2}))

que devido propriedade associativa (ab)c = a(bc) + a distributiva a(b+c) = ab + ac , resulta

3^{x-1} -3^x+ 3^{x+1} +3^{x+2} =  3^{x-1} (3^{-(x -1)}} \cdot 3^{x-1} - 3^{-(x -1)}} \cdot 3^{x} + 3^{-(x -1)}} \cdot 3^{x+1}+ 3^{-(x -1)}} \cdot 3^{x+2}   ) .

Dentro do parêntesis , você conserva a base e soma os expoentes e obtêm aquilo que você postou , e somando estes termos obterá 34 .

Entendeu ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Equação exponencial ]

Mensagempor Thais Camerino » Seg Mai 26, 2014 15:33

santhiago escreveu:Você quer dizer 3^{x-1} -3^x+ 3^{x+1} +3^{x+2} = 306 ? Se sim , note que podemos multiplicar a eq. por 1, vejamos que 1=3^0 =  3^{x-1} \cdot 3^{-(x -1)}} e

3^{x-1} -3^x+ 3^{x+1} +3^{x+2} = 1 \cdot (3^{x-1} -3^x+ 3^{x+1} +3^{x+2}) =  3^{x-1}  \cdot 3^{-(x -1)}} ((3^{x-1} -3^x+ 3^{x+1} +3^{x+2}))

que devido propriedade associativa (ab)c = a(bc) + a distributiva a(b+c) = ab + ac , resulta

3^{x-1} -3^x+ 3^{x+1} +3^{x+2} =  3^{x-1} (3^{-(x -1)}} \cdot 3^{x-1} - 3^{-(x -1)}} \cdot 3^{x} + 3^{-(x -1)}} \cdot 3^{x+1}+ 3^{-(x -1)}} \cdot 3^{x+2}   ) .

Dentro do parêntesis , você conserva a base e soma os expoentes e obtêm aquilo que você postou , e somando estes termos obterá 34 .

Entendeu ?


É sim! Hum, eu entendi individualmente mas não como um todo :s

Principalmente a transição da primeira parte para a segunda.. tentei fazer na conta q vc postou, fazendo a distributiva nos expoentes mas saiu uma coisa absurda. Não tou sabendo fazer
Thais Camerino
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Dom Abr 27, 2014 00:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Design
Andamento: cursando

Re: [Equação exponencial ]

Mensagempor e8group » Seg Mai 26, 2014 22:42

Ok.

Nós temos que

3^{x-1} - 3^x + 3^{x+1} + 3^{x+2}  =  3^{x-1} \cdot 3^{1-x} \left( 3^{x-1} - 3^x + 3^{x+1} + 3^{x+2} \right) \iff 3^{x-1} - 3^x + 3^{x+1} + 3^{x+2} =  3^{x-1} \left( 3^{1-x}\left[ 3^{x-1} - 3^x + 3^{x+1} + 3^{x+2} \right] \right)

Agora , aplicando a distributividade em relação a soma ,

3^{1-x}\left[ 3^{x-1} - 3^x + 3^{x+1} + 3^{x+2} \right] =   3^{1-x} \cdot 3^{x-1} - 3^{1-x} \cdot 3^{x} + 3^{1-x} \cdot 3^{x+1} + 3^{1-x} \cdot 3^{x+2} . Utilizando a propriedade a^m \cdot a^n = a^{m+n} ,segue

3^{1-x} \cdot 3^{x-1} - 3^{1-x} \cdot 3^{x} + 3^{1-x} \cdot 3^{x+1} + 3^{1-x} \cdot 3^{x+2}  =  3^{0}  -3^{1} + 3^{2} + 3^{3}  =   1 - 3 + 9 + 27  =  34 .

Entendeu ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}