• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[soma de bases iguais com incógnita no expoente]

[soma de bases iguais com incógnita no expoente]

Mensagempor Debylow » Qui Nov 15, 2012 21:52

Não faço a minima ideia . Obg quem responder

{2}^{2+x}+{2}^{-x}=17
Debylow
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Ter Nov 13, 2012 17:37
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando

Re: [soma de bases iguais com incógnita no expoente]

Mensagempor young_jedi » Qui Nov 15, 2012 22:24

reescrevendo a equação

2^2.2^x+\frac{1}{2^x}=17

4.2^x+\frac{1}{2^x}=17

fazendo a seguinte substituição y=2^x

4.y+\frac{1}{y}=17

multiplicando toda a equação por y

\frac{4y^2+1}{y}=\frac{17y}{y}

então podemos dizer que

4y^2+1=17y

4y^2-17y+1=0

resolvendo a equação encotra-se y e depois determina-se x
tente concluir e comente as duvidas
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1237
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [soma de bases iguais com incógnita no expoente]

Mensagempor Debylow » Qui Nov 15, 2012 22:28

kra valeu msm , vc é o cara. ;] mas eu nao consegui resolver essa equaçao do 2° com bhaskara
Debylow
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Ter Nov 13, 2012 17:37
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando

Re: [soma de bases iguais com incógnita no expoente]

Mensagempor young_jedi » Sex Nov 16, 2012 12:06

tranquilo amigo vamos fazer então

4y^2-17y+1=0

y=\frac{-(-17)\pm\sqrt{(-17)^2-4.4.1}}{2.4}

y=\frac{17\pm\sqrt{17.17-16}}{8}

y=\frac{17\pm\sqrt{273}}{8}

y=\frac{17\pm\sqrt{273}}{8}

neste caso não da para simplificar a raiz sem a ajuda de uma calculadora

e tambem nos temos que

2^x=\frac{17+\sqrt{273}}{8}

e

2^x=\frac{17-\sqrt{273}}{8}

ou seja

x=\log_2(\frac{17+\sqrt{273}}{8})

ou

x=\log_2(\frac{17-\sqrt{273}}{8})

sem o auxilio da calculadora não tem como chegar a um valor

mais talvez haja algum erro no enunciado que voce colocou
talvez ele possa ser assim

2^{2+x}+2^{2-x}=17
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1237
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [soma de bases iguais com incógnita no expoente]

Mensagempor Debylow » Sex Nov 16, 2012 13:01

Na verdade a operação é essa :
{2}^{x}+{2}^{-x}=\frac{17}{4}

muito obrigado por me ajudar.
Debylow
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Ter Nov 13, 2012 17:37
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando

Re: [soma de bases iguais com incógnita no expoente]

Mensagempor jupiterMorais » Dom Dez 11, 2016 11:59

Debylow escreveu:Na verdade a operação é essa :
{2}^{x}+{2}^{-x}=\frac{17}{4}

muito obrigado por me ajudar.
Anexos
IMG_5120.JPG
jupiterMorais
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Dez 11, 2016 11:50
Localização: Portugal
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}