• Anúncio Global
    Respostas
    Exibições
    Última mensagem

4y''+y'=0 qual relação recorrência? EDO em série de potência

4y''+y'=0 qual relação recorrência? EDO em série de potência

Mensagempor Felipe » Qua Mar 25, 2020 22:07

Alguém consegue explica o cálculo pra encontrar a relação recorrência da seguinte equação diferencial em série de potência? 4y''+y'=0
Obrigado
Felipe
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Mar 25, 2020 20:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Logística
Andamento: cursando

Re: 4y''+y'=0 qual relação recorrência? EDO em série de potê

Mensagempor adauto martins » Qui Abr 02, 2020 16:30

temos uma EDO homogenea(=0) de segunda ordem...
primeiro devemos achar y...entao
faz-se y'=p,e ambos dependo de um parametro t...
teremos
4.p'+p=0\Rightarrow p'/p=-1/4

\int_{}^{}(p'/p)=\int_{}^{}(-1/4)

ln\left|p \right|=(-1/4)t+c

\left|p \right|={e}^{(-1/4)t+c}={e}^{c}.{e}^{(-1/4)t}=k.{e}^{(-1/4)t}

como p é uma exponencial,logo p é positivo,teremos entao

p=k.{e}^{(-1/4)t}

logo,teremos

y'=p=k.{e}^{(-1/4)t}

dy/dt=k.{e}^{(-1/4)t}

dy=k.{e}^{(-1/4)t}dt

\int_{}^{}dy=\int_{}^{}(k.{e}^{(-1/4)t})dt

y=(-k/4){e}^{(-1/4)t}+c

como o problema nao traz condiçoes inicias de contorno,e o ponto onde expandir a serie...
vamos tomar p=0 , k=1 e c=0...

y=(-1/4).{e}^{(-1/4)t}

a expansao em serie de taylor y:

y=\sum_{n=0}^{\infty}({f}^{n}(0)/n!).x^{n}

y=(-1/4)+(x/16)-({x}^{2}/64)+({x}^{3}/(3!64)+...

y={(-1/4)}^{n+1}.\sum_{n=1}^{\infty}({x}^{n}/n!)
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1012
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: 4y''+y'=0 qual relação recorrência? EDO em série de potê

Mensagempor Felipe » Qui Abr 02, 2020 20:35

Obrigado... me esclareceu o calculo
Felipe
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Mar 25, 2020 20:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Logística
Andamento: cursando

Re: 4y''+y'=0 qual relação recorrência? EDO em série de potê

Mensagempor adauto martins » Dom Abr 05, 2020 11:14

forma correta de y:

y=\sum_{n=0}^{\infty}{(-1/4)}^{n+1}.({x}^{n}/n!)
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1012
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 12:41

pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.

78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?


Assunto: dúvida em uma questão em regra de 3!
Autor: Douglasm - Qui Jul 01, 2010 13:16

Observe o raciocínio:

10 pessoas - 9 dias - 135 toneladas

1 pessoa - 9 dias - 13,5 toneladas

1 pessoa - 1 dia - 1,5 toneladas

40 pessoas - 1 dia - 60 toneladas

40 pessoas - 30 dias - 1800 toneladas


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:18

pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:21

leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.

valeu meu camarada.