-
ShadowOnLine
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Qua Abr 13, 2011 23:54
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Letras com Inglês
- Andamento: formado
por Russman » Sáb Jul 19, 2014 15:33
Parece estar correto. Somando tudo que foi consumido com o que sobrou e não considerando perdas é possível reproduzir a quantidade original. Certamente, esta é uma forma de reproduzir um problema aritmético como este. A Matemática, além de positivista( álgebra: você supõe que conhece a solução "x" antes mesmo de descobri-la), é multiforme! Há diversas maneiras de solver um problema. O pragmatismo caracterizado à ela é, indubitavelmente, a fonte do seu sucesso. Há uma concordância universal e é isso que a faz evoluir e se autossustentar. Daí a recorrência do termo "formalismo" usado por praticamente todos os autores do gênero. Usualmente, emprega-se este termo quando há definições, teorema e resultados. O "arroz-e-feijão" da Matemática. "Somando tudo que foi consumido com o que sobrou e não considerando perdas é possível reproduzir a quantidade original.": este é o formalismo empregado. É esta a concordância universal.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [LOGARITMO] situação problema
por brunnkpol » Ter Jul 02, 2013 09:43
- 0 Respostas
- 1643 Exibições
- Última mensagem por brunnkpol

Ter Jul 02, 2013 09:43
Logaritmos
-
- Taxa relacionada
por Viviani » Ter Mar 05, 2013 23:00
- 1 Respostas
- 1275 Exibições
- Última mensagem por Russman

Qua Mar 06, 2013 02:40
Cálculo: Limites, Derivadas e Integrais
-
- [Situação Problema]Questão de concurso, função ou proporção.
por macro122 » Sáb Dez 12, 2015 20:01
- 1 Respostas
- 1931 Exibições
- Última mensagem por DanielFerreira

Seg Fev 08, 2016 17:13
Funções
-
- [Geometria plana relacionada ao seno]
por matII » Seg Abr 30, 2012 09:12
- 1 Respostas
- 1243 Exibições
- Última mensagem por Edu-sjc

Seg Abr 30, 2012 14:11
Geometria Plana
-
- [Questão geometria plana relacionada aos ângulos notáveis]
por Anniemf » Qua Mar 28, 2012 14:33
- 1 Respostas
- 3440 Exibições
- Última mensagem por kelvinJhonson

Sáb Abr 21, 2012 23:20
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.